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Chapter 1

Introduction

There is, as shown in Fig. 1.1, a circular waveguide which is closed at one end.
Two symmetrically placed apertures in the lateral wall of this waveguide are
backed by rectangular waveguides of identical dimensions. The dimensions of
the waveguides are such that only the TEy; and T Mp; modes can propagate
in the circular waveguide and that only the TE;o mode can propagate in
the rectangular waveguides. The problem is, as stated in [, Chapter 1]. to
find out how much of the power of an incident T My, wave in the circular
waveguide is reflected in the circular waveguide and how much of this power
is transmitted into the rectangular waveguides.

In this report, the analytical results of [1] for this problem are manipulated
into expressions suitable for evaluation by means of a digital computer. These
analytical results are not derived here; they are merely referred to. For this
reason, the reader of this report should obtain a copy of reference [1].

A computer program was written in FORTRAN. Some numerical re-
sults obiained by using this computer program are presented. The computer
program will be described and listed in a forthcoming report.

As is shown in Fig. 1.2, the interiors of the left-hand rectangular wave-
guide, the right-hand rectangular waveguide, and the circular waveguide are
called regions 1, 2, and 3, respectively. The electromagnetic field in region 1 is
radiated by M®. The field in region 2 is radiated by M Thefield in region
3 is radiated by the combination of J'™P, — MM and -M®. The magnetic
currents in Fig. 1.2 are supposed to be loacated right on (infinitesimal dis-
tances from either side) of the closing conductors. The finite displacement
of these magnetic currents from the closing conductors in Fig. 1.2 is only for
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Fig. 1.1. Top and side views of the T My, to TE;o mode converter.
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the purpose of illustration. The magnetic currents M) and M® are given
by [1, egs. (2.11) and (2.12)] in which the V’s are the elements of the column
vector on the left-hand side of 1, eq. (2.22)]. In [L, eq. (2.22)], Y!, Y2, and
Y3 are the admittance matrices for regions 1, 2, and 3, respectively. The
column vector on the right-hand side of {1, eq. (2.22)] is called the excitation
vector. The matrices Y' and Y? are treated in Chapter 2. the matrix Y3 is
treated in Chapter 3, and the excitation vector is treated in Chapter 4.

After solving [1, eq. (2.22)] for the V’s which determine M*) and M
according to (1, egs. (2.11) and (2.12)], we find the electromagnetic fields in
regions 1, 2, and 3. Expressions for the fields in regions 1 and 2 are obtained
in Chapter 5. The field in region 3 due to the combination of —3/(") and
—M®@ is considered in Chapter 6. An expression is obtained for this field
below the apertures where z < —c¢/2. Expressions are also obtained for this
field in the apertures. In Chapter 7, numerical results are presented for the
power transmitted into the rectangular waveguides, the power reflected back
into the circular waveguide, and the magnitudes of the ¢- and z-components
of the electric field in one of the apertures when a T Ey, wave is incident
in the circular waveguide and when the loads Z; and Z, that terminate the
rectangular waveguides are both matched loads.

In Appendix A, the expansion functions {MITM MITE yf2TM -y f2TE
are ordered so that each one of them can be identified by means of a sin-
gle positive integer rather than the attached combination of subscripts and
superscripts. In Appendix B, a numerical procedure for obtaining roots of
Bessel functions and their derivatives is described. Heretofore, the excita-
tion has simply been a z-traveling T My, wave in the circular waveguide. In
Appendix C, the response due to this excitation is used to find the response
due to excitation by a transverse sheet of T' My, electric current between two
impedance loads as shown in Fig. C.1.
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Chapter 2

The Admittance Matrices for
the Rectangular Waveguides

The admittance matrice for region 1, the left-hand rectangular waveguide in
Fig. 1.2, is Y'! given by [1, eq. (2.25)] where the Y’s on the right-hand side of
(1. eq. (2.25)] are approximated by ¥''s given by [1, eqgs. (3.44)(3.47)]. The
superscripts on the Y's are the same as those on the ¥7s.

For convenience, (1, eqs. (3.45) and (3.46)] are repeated:

. A
}fi},lTE,lT 1 =0 (2.

1
*1,1TMATE .
Y,! =0. (2.2)
In [1, egs. (3.44) and (3.47)], we have [1, eq. (A.12)]

{ J Bpqs kpq <k
=
8 k2, — k2, kpy > k

where k£ = w,/pe in which w is the angular frequency. Moreover. u and € are.
respectively, the permeability and permittivity of the medium in regions 1,

2, and 3. In (2.3),
7\ 2 2
b = () + (5) 2

Bpe = [k — k2. (2.5)




There is a correspondence between each pair of integers (p,q) used in {1,
eqs. (3.44) and (3.47)] and the subscript j in [1, egs. (3.44) and (3.47))].
This correspondence is described in Appendix A. If (p,q) = (1,0), then,
because the T Ejo mode propagates in the rectangular waveguide, k > ko
and substitution of (2.3) into [1, eq. (3.47)] and subsequent multiplication by

—Jjn where n = \/u/e gives

i Y LITEATE _ —; Bro(cos Prozy + j Z1 Y{§F sin Biory )6-~
I k(7 sin Brozy + 21 YEE cos Brozy)
(pq) = (1,0) (2.6
where
=L, -z, (2.7)
asin ¢,
T, = 2.8
S (2.8)
¢o = sin™! L (2.9)
’ 2a’ B
YIE is the characteristic admittance of the TEjq mode in the rectangular
waveguide [1, eq. (A.25)]
B
1%E=ﬁ% (2.10)

and ¢;; is the Kronecker delta function given by

(1=
%‘{mi¢j'

The identities [2, formulas 67 6 and 654.7] were used to obtain (2.6). In
(2.6), the subscript j is not to be confused with the other j's. Each of
these other j’s is \/—1. Because the TE,, mode does not propagate in he
rectangular waveguide when (p,q) # (1.0), 7, is real when (p,q) # (1,v)
and, from (1, eq. (3.47)],

(2.11)

X 7, 91+
= ¥ TETE = — 2B (pag) # (1,0). (2.12)

The factor —j on the left-hand side of (2.12) has rendered the right-hand
side of (2.12) real. The factor n on the left-hand sides of (2.6) and (2.12) has
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rendered the right-hand sides of (2.6) and (2.12) independent of . Multi-
plication of [1, eq. (3.44)] by —jn gives

— pippamsarr _ K o (2.13)
Tpq
Because all the TM modes in the . .ctangular waveguide are evanescent, 7,
is real in (2.13) so that the right-hand side of (2.13) is real.

The admittance matrix for region 2, the right-hand rectangular waveguide
in Fig. 1.2, is Y2 given by [1, eq. (2.27)] where the Y'’s on the right-Land side
are approximated by Y’s given by (1, egs. (3.49)-(3.52)]. Similar to (2.1),
(2.2), (2.6), (2.7), (2.12), and (2.13), we have

Y‘?,2TE,2TM _ (2.14)

Yg,i’TM,ZTE -0 (2.15)
_jpVRITEATE _ . Bro(cos Brozs + j Z;Y,5E sin 510%)6”
Y k(] sin ,810:52 + ZQY}TOVE COS ,B]o.’l'z) o

(p,q) = (1,0) (2.16)

Ty = Lg — T (217)

—inV3HTEAE = I (p,q) # (1,0) (2.18)

_jpyzemmary _ £ g (2.19)

Yre




Chapter 3

The Admittance Matrix for
the Circular Waveguide

The admittance matrix for region 3, the circular waveguide in Fig. 1.2, is Y3
given by [1, eq. (2.29)] where the Y’s on the right-hand side of [1, eq. (2.29)]
are given by [1, egs. (4.93), (4.111), (4.112), and (4.113)] in which T, S;, Sa,
53, Sy, and S5 are given by (I, eqgs. (4.94)~(4.99)]. The previously mentioned
equations for the Y’s are recast as

—jnY e TMATM — SN T {WeSy + Wols — Wil — Wi S5} (3.1)
r=0s=1

JTIK? OTENTM 2 Z {W9S1 — WSs — Wiy 8, + I’VIOSS} (3.2)
r=0 s=1

—jnY3oTMATE = S S T WeSy + WirSs + WaSy + Wols) (3.3)
r=0 s=1

—jnY 3o TETE = NN WL S — WioSs + WSy — WeSs)  (3.4)
r=0s=1

where

- 27 €m€n€ptq .

T = %l 0)(Fpab) (3.5)

W, = 33’3 (3.6)

Wy = mq (3.7)




Wio

3(1)
3(2)
2(3)
2(4)

3(5)

=25¢ASM4

= (~1)7g

= go?

= (-1y$™°

— (_1)a+7¢a'y4
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In (3.3)-(3.9), j determines p and ¢ in the manner described in Appendix
A; i determines m and n in the same manner. In obtaining (3.1)-(3.4), we
started the index r of summation in [1, egs. (4.96) and (4.97)] at 0 instead
of 1. This was possible because the r = 0 terms so introduced are zero. We

multiplied {1, eq. (4.93)] by \/emencpe, /16, (1, eq. (4.111)] by \/€,¢€,/4, and
[1, eq. (4.112)] by \/en€./4. This was possible because none of the indices
m, n, p, and ¢ which appear in these multipliers is ever zero.

3.1 Evaluation of the ¢’s in (3.10)—(3.13)

The &’s in (3.10)-(3.13) are given by (3.14)-(3.17). Substitution of [1,
egs. (E.31)-(E.34)] into (3.14)-(3.17) gives

éoﬂl — (_1)a+‘7 {¢L2)¢a271 _ ¢’(’1)¢°‘2"’2} (3.28)
¢a’72 - ¢§’2)¢0172 + ¢£1)¢°'1'71 (329)
(;50‘73 = ¢§)4)¢01171 — ¢£3)¢°172 (330)
gt = (—1)2+7 {4 gen2 4 g gem] (3.31)
For v = «, we have (1, egs. (E.46)—(E.49)]
g1 ¢2)’ v =a (3.32)
¢ = ¢y = ¢ (3.33)
¢77 = ¢V, y=a (3.34)
¢a212 = ¢£:), v = q. (335)

For v # a, we have [1, eqs. (E.53)-(E. 56)]
rb

éahl —_

o) sm — — ¢ cos v # «a (3.36)

¢ = ¢(“) sm —_ - ¢(3) cos

O
rb
O

v # «a (3.38)

$°? = T plh cos — + ¢ sin r_b

v # a. (3.39)

{ } v# a (3.37)
¢al‘v2 = l)r {¢(2) cos — + ¢(”sm T‘b}

10




In (3.28)-(3.31), the ¢,’s are given by [1, eqgs. (E.23)-(E.26)]

o = {sm A~ sin A+} (3.40)
@) _ sin?(A- /7) sin?(A*/2)
Aoy (4572 (41
@) _ sin?(A~ /9)' sin?(A*/2)
¢” { @) T (a) (3:42)
o = {smA sin A"’} (3.43)
where
At =pr + rb (3.44)
Lo
B rb
AT =pr — . (3.45)

The ¢’s in (3.36)-(3.39) are given by the right-hand sides of (3.40)-(3.43)
with At and A~ replaced by the right-hand sides of (3.44) and (3.45) with
p replaced by m.

3.2 Evaluation of the z’s in (3.10)—(3.13)

The 2's in (3.10)—(3.13) are given by (3.18)-(3.22). In (3.18)-(3.22), ¢, is
Neumann'’s number given by [1, eq. (B.9)]

e,:{i’ f(l’ (3.46)

J,. is the Bessel function of the first kind of order r, z., is the st root of Jr,
J] is the derivative of /. with respect to its argument, and z., is the sth root

of J!. The roots {z,5, 7 =5 =1,2,---} and {z,,, r = 1,2,---} are ordered
such that
0< Top K Tp2 < Typz*+- (347)
0<zl, <z, <3 (3.48)

11




Still in (3.18)-(3.22), we have [1, eqs. (B.7) and (B.41)]

RIM = Irs (3.49)
a
JTE = Zre, (3.50)
a
Since J,(z,,) = 0, we have [3, formula 9.1.27]
J:(xrs) = —']r+l(xr5)' (351)
Substitution of (3.49)—(3.51) into (3.18)~(3.22) yields
€\ .
4 = (ka)? (5) 5) (3.52)
r2:(2)
w= (3.53)
12 2(3) ;
= reoz sin ¢, (3.54)
7l —r? %o
by = TEni? (E_) (Si“ ¢°) (3.55)
2 -r2\2 G0

14 2(5)
. T, 4z
~5 —

12 _ g2
zi—T

) (Si2f°)2. (3.56)

The 3’s in (3.52)-(3.56) are given by (3.23)-(3.27) where (1, eqs. (B.24)
and (B.53)]

o

1 3TM g Zry < ka
™, —{ il P (3.57)

1‘33 - (ka)Z y Trs 2 ka
{ jB3%Ea , Thy < ka
TE, _

(3.58)
JeZ—(kay | 2, > ka

where

BiMa = \[(ka)? — 22, (3.59)
TEg = \/(ka)? — z!2. (3.60)

rs

12




From {1, egs. (F.60), (F.61), (F.76), (F.81), (F.118), and (F.119)],

S = i(DTMGTM + CzFTM) (3.61)
(2) _ i (DTEGTE + CzFTE) (3.62)
1
200 = 2 (DOGE) 4.2 F ) (3.63)
RO ( DTEGW 4 W) (3.64)
o AIETE
208) = W +1 (DPGW + 2 FO) (3.65)

where the D’s, the (’s, the F’s, and zTF are dealt with in [1, Appendix F].
In view of [1, eq. (F.33)] and (3.50), substitution of (3.61)-(3.65) into (3.23)-
(3.27) gives

j ( FTM (‘;TM bgM)

ERE “Thig (3.66)
22 = j (FTE GTEDTE) 73;5& (367)
59 = FO 4 GTEPR) (3.68)
FIC) N (F(‘*) + Gf,“"D,fE) (3.69)
.,TE i [ F(5) ~4) H3)
) o 20% (F + G D, ) (3.70)
621"2 ,.),TEa
where
a 16
G = % §=TM,TE (3.71)
, D*
D= —, 6=TM,TE (3.72)
) 3)
po = 27 (3.73)
[
N GH)
G = — (3.74)
13




3.2.1 The T Quantity 3 for z,., < ka

With z,, < ka, substitution of (3.57) into (3.66) gives

FT‘U + GqTA! DZN!

(1)
) 2 e (3.75)
Substituting [1, eq. (F.87)] into (3.71), we obtain
¢’ c
sin(¢®~¢) cos(8¢,L3) — 2sin? (—9—> sin(3%,L3)
ns 2
Gy = c
e
sin(q%*¢) cos(B,LT) + 2sin? ( 5 ) sin(3%,LY)
+ = (3.76)

q6+c

where é may be either TM or TE and where [1, egs. (F.11), (F.23), and
(F.24)]

L} =L+ (3.77)
¢"c=qr - Blc (3.78)
¢te=qr + . (3.79)

Using (3.77)~(3.79) and (2, formulas 403.02, 401.03, and 401.04], we reduce
(3.76) to

o

o*e -
sin( 5 ) sin( )
8 _ < § il
Gr= gt e (B - D) (380

2 2

Substituting [1, eq. (F.85)] into (3.72), we obtain

- 5— a2t . 5 2 [ nb+
Dﬁ: {—Jsm(n c) — 2sin ( 26) N —jsin(n®*¢) + 2sin (—79)} oLt

e’jan
n—c n+e

(3.81)




where n°~c and n’t ¢ are given by (3.78) and (3.79) with ¢ replaced by n. In
the same manner as we reduced (3.76) to (3.80), we can reduce (3.81) to

sin S1
- 2
D5 = —{ —— ( 1)”'—__...2___

" nbte n-¢
2 2

P 4

.{sin (ﬂ L;— ﬂp) + j cos (ﬁstg n‘;r)} (3.82)

<~

As for the quantity F7% in (3.75), we have (1, eq. (F.79)]

F’ = —f(n’¢,- )+f(n ¢,q""¢)
—f(n’e,q’ C) + f(n**e,—¢’*¢) (3.83)
where § may be either TAf or TE and (1, eq. (F.97)]
_sinz { z+y#0
yzT ’ ll > 3
(=1)siny Jz+y#0
z ’ yl < 3
flay) =4 > L wlss (3.84)
y —smny T+y =
y? ’ { ly| > 0.1
y v v y’° t+y=0
[ 315 T lyl £ 0.1
where [ is the integer that satisfies
z+y=1Ir. (3.85)

When z., < ka, the TM quantity 21 is now given by (3.75) in which
ATMa, GTM DTM and FT™ are given by (3.59), (3.80), (3.82) and (3.83),
respectively.

3.2.2 The TM Quantity (Y for z,, > ka

When z,, > ka, we proceed to evaluate expression (3.66) for 2 which con-
tains the quantities GT" DTM and FTM These quantities with the super-
script T M replaced b} § are, according to (3.71), (3.72), and [1, eqgs. (F.104),

15




(F.100), (F.101), and (F.107)—(F.109)], given by

GE = ¢, {sinh(gL) ~ (=1)*sinh (g(LF - ©)) } (3.86)
. . —sinh (&) , ‘en
DS = 2jee-sii-n ] T (5) o mes (3.87)
cosh (-725) , n odd
(=1)"cncy sinh(gc) , ¢#n
F5 =i (—1.)ncncq sinh(gc) —¢, , g=n#0 (3.88)
A{sinh(ge) — ge} e
(g¢)? ’
where
9= (3.89)
9.0
Cn — et (3.90)

Furthermore, ¢, is the right-hand side of (3.90) with n replaced by ¢. The
truncated series approximation inherent in 1, eq. (F.110)] is introduced later
in this section. The case where z,, = ka is not aliowed because, if z,,a = ka,
then, according to (3.57), v5*a would be zero so that division by 1IMq in
(3.66) would be impossible.
Substituting (3.77) into (3.86) and using [2, formulas 651.06 and 651.07],

we obtain nh(ge/2) cosh(gLa)

s sinh{gc/2)cosh(gL3) , g even

Gy = ch{ sinh(gL3) cosh(gc/2) , qodd } : (3.91)

Substitution of (3.77) into (3.87) gives

AS — 9. o—aL —sinh(gc/2) , n even 0
D =2jene 3{ cosh(ge/2) |, mnodd |~ (3.92)

Combining (3.88), (3.91), and (3.92) and using (2, formulas 652.12 and 654.5]
to simplify the result, we obtain

j(F6+c‘;'§D$;)=cnq+cn{1 ’ ‘12”7&0} (3.93)

¢ , otherwise
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where

( n even )
CnCqZee q even
g#n
n even
CnCqZee g=n ;é 0
_ CnCqZyo 3 q=n= 0
Cng = n odd ’ (3.94)
nCqZoe q even
n even
CnCq2pe q odd
o n odd
l nCg~o0 > q odd )
In (3.94),
Zee = 2 {e'29l‘3 sinh % - e‘ﬂzs} sinh ch (3.95)
2o = Zee + gC (3.96)
ze = —e~ L3 5inh gc (3.97)
Zoo = 2 {6'29L3 cosh %C- - 6_925} cosh Z; . (3.98)

The value of sinh(gc/2) is excessively large when gc/2 is only moderately
large. Moreover, z, approaches zero more rapidly than gc as gc approaches
zero. To avoid computational difficulties, we replace (3.95)-(3.98) by

e~9¢ — e-2gL;-, ~ 14 % {e—g(2L3~c) + e—g(2L3+c)} , gc Z 1
e = ‘ ey (3.99)
2 {e"29”3 sinh & — e }smh = , ge<1
( e~9¢ — e—‘ZgLs -1+ % {e—g(2L3~c) + e—g(2L3+c)} + gc, gc > 1
2{6_29[‘3 sinh £ ——e"gzs}sinh“{- + gc , 001 <ge<xl
2 = 4 2{ (‘.2(3‘34£ sinh & + e~29L3 sinh -"25) sinh & (3.100)
3 5 7
(5) .5 ., &)
2 2 2
3l + 5! + = } , gc < 0.01

\
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o %{e—g(unc) - 6—9(2L3—C)} . ge>1 (3.101)
Zoe = )
—e~ %93 5inh gc , gc<1

{ e—?gLa —e 9~ 1+ % {6-9(2L3—C) + 6-5](2L3+c)}’ gc >1

¢ - =g
Z{e bs cosh & — e 2}cosh-'12E . gc< 1

} . (3.102)

We used the approximation [2, formula 637.1]

3 I3 7

smhx—rz%-f-—-\‘—‘— (3.103)
to obtain z, of (3.100) for gc < 0.01. From Fig. 1.2, L3 > ¢/2 so that all
the arguments of the exponentials in (3.99)-(3.102) are less than or equal
to zero. The exponentials in (3.99)-(3.102) will be excessively small when
gL is only moderately large. However, this will not cause any difficulty if
we use a computing system which treats an underflow by setting the number
equal to zero and proceeding without an error message. The right-hand
side of (3.94) cannot be evaluated when gc = 0 and when n =0 or ¢ =0
because ¢, = 2/(gc) when n = 0 and ¢, = 2/(gc) when ¢ = 0. However, the
right-hand side of (3.94) remains finite as gc approaches zero when n = 0 or
q=0.

When z,, > ka, the T M quantity 31 is now given by (3.66) in which
~TMa and j(FTM + C’Z‘”DZ‘") are given by (3.37) and (3.93). respectively.
In (3.93), ¢, and c,, are given by (3.90) and (3.94), respectively. In (3.94),
Zees 20, Zoey and z,, are given by (3.99)-(3.102) where g is given by (3.89).

3.2.3 The TE Quantities 29-:®) for 1/ < ka

When 'xis < ka, vTEa is given by (3.58) so that expressions (3.67)-(3.70) for
2(2-265) become

2 = — (FTE + GTEDIF) 3TFa (3.104)
23 — p03) GTED(3) (3.105)
2(4) — ( Ja ((4)DTE) (3.106)
5) £ G ‘(3) , n= 0
205) = F7+GD, c:z:’2 n=af . (3.107)
3TEq _
rs , otherwise
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We obtained (3.107) by substituting [1, eq. (F.121)] for =TE.

In (3.104), 3%Eaq, C:v'qTE, BZE, and FTE are given by (3.60), (3.80), (3.82),
and (3.83), respectively. As for C;'fl“) in (3.106) and (3.107), substitution of
[1, eq. (F.122)] into (3.74) gives

TE-
sin(gTE=¢) cos(BLELT) ~ 2sin’ (q » c) sin(8TELY)

v
-

~(4)
Gq - qTE‘c

TE+,
sin(qTE*¢) cos(BTELT) + 2sin? (

<

> sin(ﬂ,TsEL;)

. . (3.108)

Note that the right-hand side of (3.108) is that of (3.76) with § replaced by
TE and with the sign of the coeflicient of 1/(¢**c) changed. If we recall also
that (3.76) reduced to (3.80), we see that (3.108) reduces to

. <(ITE+C) ( TE_C)
) sin > Sin > T
i 2 i = L\ os(3TE [, — Ty (3.109)

g T3 qTE+C ,{TE-C 2
2 2

As for D in (3.105) and (3.107), substitution of [1. eq. (F.86)] into (3.73)
gives

+(-1)

- . TE- 9o 2 nTE_C L. TE+ - ” 71TE+C
Jsin(n"®7¢) + 2sin 5 —Jsin(n"®%c) + 2sin 5

n _ &
nTE-¢ nTE+,

-

D® =

.e_.)fjrs L:; . (3' IO)

The right-hand side of (3.110) is that of (3.31) with § replaced by TE and
with the sign of the coefficient of 1/(n®~c) changed; recalling that (3.81)
reduced to (3.82), we see that (3.110) reduces to

) nTE+C _ nTE—C
) sin 2 nbll’l 5)
D® = { = L —_—

nTE+¢ nTE-¢
2 2

+(-1)
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{sm (3”5[,3—&)—}-](05(3 L3_n_);_>} . (3.111)

4 <

The F’s in (3.105)-(3.107) are given by [1, egs. (F.84). (F.123), and (F.124))

F(3) — f(nTE— _qTE— )+f(llTE+C, qTE—C)

+f(nTE ¢, ¢"F%¢c) + f(rnF*c, —¢" "7 ¢) (3.112)
F(4) — f(nTE—c, )+f( TE+ TE— )
+f(nT TE* c) — f(nTF*c, —1TE+c) (3.113)

FO = f(n"Ec, =q"E¢) + f(n""*e, ¢ c)
—f(nTE_C, qTE+C) _ f(nTE+C, —qTE+C) (3'114)

where f is given by (3.84).

3.2.4 The TE Quantities 23—-:0) for 2/ > ka

When r’, > ka, we proceed to evaluate expressions (3.67)-(3.70) for 3@
— ) Expression (3.67) is

3@ = (FTE + GTEDIF)yIFa (3.115)
where 4TFa is given by (3.58). In (3.115), j(FTE + GZEDZE) is given by

the right-hand side of (3.93) with é replaced by TE, that is, with g (which
appears in the z’s of (3.95)-(3.98)) given by

g =75, (3.116)
with ¢, given by
- TE
e, = frs © (3.117)

(nm)? + (YIEC)
and with ¢, given by the right-hand side of (3.117) with n replaced by q.
Throughout Section 3.2.4, g and ¢, are given by (3.116) and (3.117). This g
and this ¢, are not to be confused with the g and t.e ¢, given by (3.89) and
(3.90) of Section 3.2.2.
Expression (3.68) is

30 = O L GTEDD (3.118)
g “n- .
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In (3.118), F® is given by [1, egs. (F.111)-(F.113)]

(—1)"cqc, sinh(ge) , q#F N
nmw | (=1)"cacysinh(ge) —c, , g=n#0
gc | 4{sinh(gc) —
(g¢)?

As given by (3.119), F® = 0 when ¢ = n = 0. The right-hand side of (3.119)
was written so as to be similar to the right-hand side of (3.88). In (3.118),
CTE is given by the right-hand side of (3.91) with g given by (3.116) rather
than by (3.89). As for DSLS), in view of (3.77), substitution of [1, egs. (F.102)
and (F.103)] into (3.73) gives

(3.119)

, g=n=0

A@3) _ 20TCn _or, | —sinh(gc/2) , neven o
Dn gc ¢ {cosh(gc/?) , nodd |’ (3.120)

Comparing the quantities F(®), GQTE, and f)f) of this paragraph with the
quantities F® of (3.88), G¢ of (3.91), and DS of (3.92) and noting that the
latter quantities combined to give (3.93), we obtain

FO 4 GTEP® = ~ "L [(FTE 4 GTEDTF)) (3.121)
gc

where j(FTE + GTEDTE) is given by the right-hand side of (3.93) with 6 re-
placed by T E as described in the third sentence of Section 3.2.4. Substitution
of (3.121) into (3.118) gives

3 = —;— J(FTE + GTEDTE)}. (3.122)

Expression (3.69) is
W = —(FW 4 GINDTE), (3.123)

In (3.123), FM is given by [1, eqs. (F.129)~(F.131)]

(=1)"cne, sinh(ge) . qFEN
F(4) _ __ﬂ (_1)ncﬂcq sinh(gc) —C , gq=n # 0 (3 194)
~ gc | 4{sinh(gc) — gc} —n=0 ' o
(gc)? P IEnE
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As given by (3.124), F#) = 0 when ¢ = n = 0. The right-hand side of (3.124)
was written so as to be similar to the right-hand side of (3.88). As for Gf,")
in (3.123), substitution of [1, eq. (F.126)] into (3.74) gives

A .qTe
Gg4) =J q
gc

{sinh(gL3) — (=1)7sinh(g(L} - c))}. (3.125)

Substituting (3.77) into (3.125) and using [2, formulas 651.06 and 651.07],
we obtain

A 2 i 2 .
(4) _ :2qmcq | sinh(gc/2) cosh(gLs) , g even )
Gq =J gc { sinh(ng) COSh(gc/Q) , q odd . (31-6)

In (3.123), DTE is given by (3.92) with & replaced by TE. Thus,

—sinh(gc/2) , n even

NTE _ 9, —gls
Dn “Jne { cosh(ge/2) , nodd

(3.127)

where g and ¢, are given by (3.116) and (3.117). Comparing the quantities
F® of (3.124), G of (3.126), and DIF of (3.127) with the quantities F* of
(3.88), GZ of (3.91), and D¢ of (3.92) and noting that the latter quantities
combined to give (3.93), we obtain

. R qr (. - ..
0+ GDTE = = {J(FTE 4+ GTEDTE)} (3.128)
where j(FTE+GZEﬁZE) is as in (3.121). Substitution of (3.128) into (3.123)

gives
R T . ~ a
2(4) — __‘;_c_ {](FTE + GqTED:‘E)} ) (3‘129)

Substitution of (3.116) and [1, eq. (F.121)] into (3.70) gives
(5 _ 20 { 1, n=qg#0 } j(F(5)+Gg“)D$13))

0 , otherwise ga

(3.130)

where F(5) is given by [1, eqs. (F.132)—(F.134)]

(=1)*cpcysinh(ge) , q#n
2 )
(5) _ .nqm (=1)*cnc,sinh(ge) , g=n#0 _ 1. g=n#0
7= ](96)2 4{sinh(gc) — gc} t 16 0, otherwise [~

(gc)?

y q=n=0

(3.131)

[ 3]
[S%]




Note that [1, eq. (F.132)] is not correct. Please correct [1, eq. (F.132)] by
multiplying the denominator of the right-hand side by (n7)? + (7ZEc)%. As
given by (3.131), F©® = 0 when ¢ = n = 0. The right-hand side of (3.131)
was written so as to be as much as possible like the right-hand side of (3.88).
In (3.130), Gg” and D® are given by (3.126) and (3.120), respectively. Com-
paring the quantities F® of (3.131), Gg“‘) of (3.126), and D® of (3.120) with
the quantities F° of (3.88), Gg of (3.91), and D! of (3.92) and noting that
the latter quantities combined to give (3.93), we obtain

2
(5) L A(4) B(3)y _ M4 Cng 1, g=n#0
J(F®) 4 Gq D) = ——(gc)2 cn{ 0, otherwise [° (3.132)

where ¢, is given by (3.117) and c¢,, is given by (3.94) in which the z’s are
given by (3.95)-(3.98) with g given by (3.116). Substitution of (3.132) into
(3.130) gives

. chn 2 n 1’ -
s5) = 4 q+< a’;c}{\){o 1 "7“’}. (3.133)

(ga)(gc)? cxl? otherwise




Chapter 4

The Excitation Vector

The elements of the excitation vector are given by [1, egs. (5.13) and (5.16)]

I?TM = 2¢0 V b Jsm~'ccne_“3°TlML3 (41)
'mn@ C

S¢.m /c ame, ¢ T
[iaTE = k¢o a (E) #ysmzccne-mm 'Ls (4-2)
mn

where [1, eq. (5.21)]

0 , m even
ysm—{#  modd (4.3)

and [1, eq. (5.24)]
. sin(nw — BTMc) cos(BTMLY) — ‘25in2(11-1"—‘;°?—{—c) sin(BIMLY)
cen = 2(n7r - ﬁg"lx\lc)
sin(nm + BTMc) cos(BHM LT ) + 2sin (f—"ﬂm——) sin( 31V LY)
T 2nt + BLMe)

. (4.4)

In (4.1) and (4.2), « is either 1 or 2, and ¢ determines m and n as described

in Appendix A.
Comparing the right-hand side of (4.4) with that of (3.76), we see that

= = [6TV] (4.5)

o1

lOl»—t




where [GA',TLM]OI is GZM when r = 0 and s = 1. Substitution of (4.3) and
(4.5) into (4.1) and (4.2) gives

SQS [ TM 0, m even
oTM _ ol TM =3B L )
I mkmnb [G }01 ’ { 1, modd } (4.6)

oTE _ O9o  [EmEnC [ ATaf _ipgtyr, J 0, m even
B =15V "amb (6] €7 1 modd (- (&7

Multplying both (4.6) and (4.7) by —jei%:'"Ls and noting that €,/2 = 1
whenever m is odd, we obtain

_i7oTM ;BTMLy _ Sdon TM 0, m even
FIOTM giBE MLy — mkmb‘/m: [G {1’ o odd } (4.8)

. raTE _jBTML; _ /fn T\[ 0, m even
—]Ii elPor b3 — ]kmnb [ { 1, m odd } (49)
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Chapter 5

The Electric Field in the
Rectangular Waveguides

In this chapter, modal expansions are found for the electric fields in the
rectangular waveguides. Afterwards, the time-average powers of the T Ej
modes in the rectangular waveguides are obtained.

5.1 Expansions in Terms of the Fields of the
Magnetic Currents

The electric field E! in the left-hand rectangular waveguide (region 1) in
Fig. 1.2 is due to MV and is given by [1, eqs. (2.3) and (2.11)]

EV =T S VIENQ AT+ Y Y VITEYQ LTS, ()

g=1p=1 q=0 p=0
p+9#0

In obtaining (5.1), the upper limits on p and ¢ in [1, eq. (2.11)] were sup-
pressed. We truncated the double summations in (3.1) by retaining only
terms for which both p and ¢ are so small that, according to (A.2),

2
\j(pvr)2 + (TC’—I’) < BKM. (5.2)




The electric field E£(? in the right-hand rectangular waveguide (region 2) in
Fig. 1.2] is similarly given by
E® = D V2TME(2) 0, L_%'M + S VzTEE(z)(Q ‘[2TE)_ (5.3)

g9=1p=1 g=0 p=0
p+q#£0
We approximate the A’s on the right-hand sides of (5.1) and (5.3) by the
M’s given by [1, €gs. (3.3) and 3.13)]. In Sections 5.2 to 5.5, we express the
resulting approximate E’s on the right-hand sides of (5.1) and (5.3) in terms
of the modes of the rectangular waveguides.

5.2 The Electric Field of the Magnetic Cur-
~ 1TM
rent M,

The electric field ﬁ(l) 0, \11 » due to ;‘\A'Il M in region 1 of Fig. 1.2 is given
=pq g g
by [1 eq. (3. 30)]

‘[lTNI

TM
£V, k2o

+ -+
)_{eT"(y ,z )—‘J.z pa*-p1 (J o )}e‘qu(r+ro)_ (5.4)
Vrq

From (1, egs. (A.3) and (A.13)], the mode field ET" is given by
kqu T“{(J+, z+)

EZ’qM— ZTM{QTM(J ,2 ) w, > }6”""5. (5.5)
pP1
In view of (5.5), we recast (5.4) as
) 1
EMQ, 500" = ( 7”5;‘") ez, (5.6)
5.3 The Electric Field of the Magnetic Cur-
~2TM
rent M

The electric field E_(”(Q,Al ) due to 1_\_[m in region 2 of Ilig. 1.2 is given
by [1, eq. (3.36)]
'ZT\f —{ TA'” k?, d’T‘I(J y ~ )

E™(0, M, (=5 +u, JeTwalz=ro) - (57)

“pq
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From [1, egs. (A.2) and (A.3)], the mode field E_Z;”‘ is given by

A TM(?/ )
ERM = 2T ) + o, 0 JenE (58)
“Tpq
In view of (5.8), we recast (3.7) as
~ 2TM 1 - .
E®@Q,M,, ") = ( ZT\,E,Q‘”)e""' ° (5.9)

5.4 The Electric field of the Magnetic Cur-
~ 1TE
rent M,

The electric field Em(Q, 1_\:[;:5) due to _\l;:E in region 1 of Fig. 1.2 is given
by [1, egs. (3.32) and (3.34)]

~ 1TE
_E_(l)(Q’.i‘_lo ) = 810 (y+w—+)
'] sin(Bio( L1 + ) + Z1Y.5E cos(Bio( L1 + 7))

— 5.10
jsin(Broz1) + Z) Y75 cos(Bioz:) ( )
~ 1TE -
EMQ,0,,7) = elF(yt, z¥)e» 5+ (p,q) # (1,0) (5.11)
where
T = Ll - T,H. (512)

In obtaining (5.10), we substituted j3;o for 7,0 and used [2, formulas 654.6
and 654.7]. Equation (5.10) is recast as

E(l)(Q, LLIZ'E) (ZIYEEE +'1)ej310(L1+r) + (Z’IYJ;E _ l)e'j-‘j’O(Ll‘*’I)
2(5 sin(B1oz1) + Z1 Y5 cos(Biot1))
-10 (J z*). (5.13)

From [1, eqs. (A.14) and (A.15)], the mode fields ETE* and ETE~ are given
by

ERTY = elg(y*, zh)emifvr (5.14)
TE- = (TE(y*, 21?05, (pg) # (1,0). (5.15)
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In obtaining (5.14) and (5.15), we substituted jB; for y;0. In view of (5.14)
and (5.15), we recast (5.13) as

(ZlyTE + I)E%E-ejﬁwh + (ZlYITOE —- I)E']TOE‘*G—_mwh
2(7 sin(Bror1) + Z1 YIEE cos(B1021))

EM(Q, M EY =

(5.16)
From [1, eq. (A.15)], the mode field _E_ZQE' is given by
EIF = el F(y*, e%)eme. (5.17)
In view of (5.17), we recast (5.11) as
~1TE s .
EMQ,AM,, ") = ETE=emwe™  (p,q) # (1,0). (5.18)

5.5 The Ele%grlc Field of the Magnetic Cur-

rent M

The electric field E(Q, Mifg) due to JliqTE in region 2 of Fig. 1.2 is given
by (1, egs. (3.38) and (3.40)]

2TE jSin(BIO(LZ —-z))+ ZzylgE 003(510([42 — 1)) TE

EPQ, My ) = — € 2
( 10 ) j sin(Bro2) + Z2Y15F cos(Bioz2) o (U27)
(5.19)
~ 2TE —z
_E.(z)(Qv-j—\qu ) = QZQE(y+7 :+)e~'ypq(:r: O)v (pv (I) :lté (1’0) (520)
where
Ty = L2 — T,. (521)

In obtaining (5.19), we substituted jB; for v19 and used [2. formulas 654.6
and 654.7]. Equation (5.19) is recast as

~2TE, (Z:YEE + 1e —ib10(L2-7) (ZQY,OE —~ 1)e~P0(le-2)
2(j sin(Broz2) + Z3Y15F cos(310z2))

(5.22)




In view of (5.14) and (5.15), we recast (5.22) as

(Z:YEP + DETE* el + (Z;YEE — 1) BT~ emiook

2 ~ 2TE —
EP(Q, Mo ) 2() sin(Brozs) + ZYi5P cos{Bros2)

(5.23)
From (1, eq. (A.14)], the mode field ETF* is given by
TE TE —%¥pqT
ECT =¢, (yt, 27 )e ™ (5.24)
In view of (5.24), we recast (5.20) as
« 2TE
E®Q,M, ") = EXF*em®,  (p,q) # (1,0). (5.25)

5.6 Expansions in Terms of Waveguide Modes

Substitution of (5.6), (5.16) and (5.18) into (5.1) with the Al's replaced by
M’s gives

(ZiYEE + DETF-eob + (ZVEE — DETF* b g

EM = ,
2(5 sm(ﬂ,o'cl) + Z1YEE cos(Brox1)) 10

+ Z Z VIT}\I Z—TM _E_Z';\l—)eﬂpqto

g=1 p=1
+> Y VATEETE- e (5.26)

q=0 p=0

p+9#0
(p.q)#(1,0)

Substitution of (5.9), (5.23) and (5.25) into (5.3) with the M’s replaced by
M’s gives

(Z:Yi5" + 1)Elg ™ol + (Y5 — DEig e ol opp

E® = — . .
2(] SIH(,B]()IQ) + ZQYTE COS(ﬂlo.l‘g)) 10

+ Z Z V2TM ZTMET\I+)8‘YMIO

. g=1p=1

+3° 3 VETEETE+ e, (5.27)

9=0 p=0 .
p+q#0
(p.9)#(1,0)
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5.6.1 Normalization of E(Y and E®

The quantities E_m and E® are due to the z traveling wave whose electric
field in the circular waveguide is EIM** given by

(kg )G (p, @)%

Jwe

ETAIe+ ZT}\leo T\Ie(p’a) -ipTMz +u, (528)

L4

where

TAM
7
Zgix\{eo ]3 (529)

Equation (5.28) was obtained by substltutmg (3.57) into [1, eq. (B.1)]. Equa-
tion (5.29) was obtained by substituting (3.37) into [1, eq. (B.25)]. In this
subsection, suitable expressions are found for the quantities EW ity ”’3/

 ZTMeo and EPeif M Ls [, [ 7TMeo These quantities are, according to (5.28),

due to the z-traveling wave whose transverse electric field is \/ ZL®2eTMe(p, ¢)
at = = L3 in the circular waveguide. In Section 6.3, it will be shown that the
z-directed time-average power associated with this field is unity.

Multiplying both sides of (5.26) and (5.27) by /%" Ls /| /ZTMee and using
(5.29), we obtain

TM - - -7
( ],6 17 ) E(l) CITE CJﬁlOIOETE + CITE+ ]ﬁ]ol’oE'lI;)E'F

/ Zg;x\[ €o

CIT M- 'v,,qzoETA"— CI\TE- ewpqrc_E_T;E—
D R D T (530
g=1p=1 Iqu I p=0 \/|qu
p+q#0
(p.9)#(1.0)

AT A s DR
(61501 Ls) o _ CHE+eibioro fTE+ 4 CTE= o=jbroz, T

/Zg‘lMeo /YlgE

CZTA‘[*}- e"/pql’o TM+ C?TE+ e‘quro FTE+
+ Z Z T‘EPQ Z Z rq -TE“P'I (531)
9=1p=1 VIZIM] p=0 Y5
p+q#0
{p.q)#(1.0)
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‘/’%TECng‘lMLJ
N R PP

n
A V2TM oiB5M Ly
oMt = e m( = (5.38)
‘)’pqﬂm "

V2TE, 33T Ly
Coa ot = (\/ r ) [ =2 : (5.39)
601 n

5.7 Time-Average Power

What is the z-directed time-average power associated with an arbitrary elec-
tromagnetic field (E, H) in a source-free region of a rectangular waveguide?
This field can be expressed as

“pg =pq =pq ]

E = Z(CI’{;M+ET}\I+ + CL“I-ET‘V— + CZ;E+ ETE+ + CZ;E— ETE_) (540)
r.9

H — Z(Cg;‘[+ﬂz-[;u+ + CZ;,\[—L[_Z;\I— + C;E+H—ZQE+ + CZ;E‘H.Z,;E—)- (541)
P

On the right-hand sides of (5.40) and (5.41), the C’s are constants, and the

E’s and the H’s are the mode fields defined by [1, egs. (A.2). (A.3), (A.14),

and (A.15)]. The z-directed time-average power P associated with (E, H) is
given by [4, egs. (1-57) and (1-58)]

b c
P=/ dy+/ dz*Re(E x H") - u, (5.42)
0 0

119

where “*” denotes complex conjugate and “Re” denotes real part. Sub-
stituting (5.40) and (5.41) into (5.42) and using the previously mentioned
definitions of the mode fields and the last of the orthogonality relations [1,
eq. (A.26)], we obtain
P = Z{IC;IA\Y+I26—2Re(7pq)r _ ICPT(;\!—|2€2Re(7pq)r}Re(Z;I;.\!)
P

-2 Imag{C'qu‘"*(CpT;"- * ¢~ 2Imag(190)7 ) [y a g Zqu.\l)
p.q
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In (5.30),

\TE-
Cio

1TE+
CIO

1T -
CPQ

1\TE-
CPQ

In (5.31),

2TE+
Clo

2TE+
Cio

fl

TM [} 2(Z, Y EE cos(Brozr) + 7 sin(Bor1)) )

1TE j,ﬂT'\’Ls
(hg_ﬁi__) (5.32)
U

Bio (Z1 7 EE — 1)emi%0n }
V BEM | | 2(Z1Y5E cos(Brozr) + Jsin(31071)) ]

VITE ‘}JT"’La
. (_.LL_OI__ (5.33)

n
‘1. TM j3TML
L Vo "0 (5.34)
7pqﬂ(£“, 4
TE ,idTML
‘/p? Vpl'l 6“301 3 . (335)
\/Bg'luf )
Bio (ZoYEE + )eror }
AEM ) | A Z2Y\5E cos(B10r2) + J sin(31072))
2TE 335V La
n

Bho (Z2Y£E — 1)e~Idwr2 }
\/ 35N A ZyYEE cost 31022) + J sin(Jror2))




+ Z{ ]C£E+ l28—2Re(wpq)r _ ICg;E_ lzezRe(wpq)r}Re( ).-TE)

P1

—”ZImag{C’TE+ CTE )'e'2j1"‘a5('*”q)rlrllag(YPZE) (5.43)

where “Imag” denotes imaginary part. In (5.43), we have [1, eqs. (A.13) and
(A.25)]

; 1
VARSES —J% (5.44)
TE _ _ :pg
}pq - _J"kﬂn’ (545)
where vp, = —j 3,4 if the mode propagates, and v,, is purely 1eal if thc mode

does not propagate. Since only the 7'F;o mode propagates, (5.43) reduces to

{vaqlmag{CT‘\H' CT\I ) }} ﬂlO{ICTE+!2 _ |CITUE—|2}

t)
+i—5 Z7pqlmag{CTE+(CTE )}y (5.46)

(r. q)#(l 0}

5.7.1 Time-Average Power in the Rectangular Wave-
guides

The normalized electric fields E(Meifi*Laf,/zTMeo and  E®eidLaf
v Z&Me of (5.37) and (5.38) are due to the z-traveling wave whose trans-

My._ . . .
verse electric field is ETMete=100,"(==La) /| [7TMeo in the circular waveguide.
The z-directed time-average power of this field in the circular waveguide is,
as given by an expression very similar to (5.31). equal to unity. The —z-

directed time-average power of E(Nel%0"Ls /7T Meo i Pty zIM= given by
(5.31) as

Pt \TE- |2 I TE+2 I
ZTMes = =|C1o = |Clo I (5.47)
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The z-directed time-average power of E(eif"La [, [7TMeo jg P2 ZTMeo
given by (5.31) as
P& C2TE+|2 _ |(2TE=-)2 48
—Z?;m—lm I* = 1C 1% (5.48)
When the incident time-average power in the circular waveguide is unity, the
time-average power P, transmitted into the rectangular waveguides is the
sum of (5.47) and (5.48):

P =|ClE P = |CITE ) + |CITEH? — |ICT B (5.49)
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Chapter 6

The Electric Field in the
Circular Waveguide

In this chapter, a modal expansion is found for the electric field £ in the
part of the circular waveguide for which z; < z < —¢/2 where z; is such that
the impressed source J'™P lies in the region for which z < z,. See Fig. 1.2
where the entire region inside the circular waveguide is called Region 3. As
stated in Chapter 1, only the T Ay, and TE;; modes propagate in Region
3. The coefficients of the TMy, and TF;; modes in the modal expansion
for E® are then expressed in forms suitable for computation. Finally, the
time-average powers of the T'My; and T E;; modal contributions to E® are
obtained.

The electric field E® in the circular waveguide is given by [1, eq. (2.7)]

E® = E®(Q, - MM — M) 4 E®)(J™e ) (6.1)

where _E_(3)(J_imp, 0) is the electric field due to J™P, and E‘B)(Q, - —J_[(Q))
is the electric field due to —M™ — AL where M — A[? is the combination
of =M™ and —M@. Each of the sources J™, =MV and — M radiates
in the circular waveguide with the apertures closed, with the short at = = L,
and with a matched load at the other end where z << 0.
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6.1 The Electric Field E®(0, -M" — M)

Since MM and M@ are given by [1, egs. {2.11) and (2.12)], we have

E®(Q,-MY - M®) = — 3 VM ESQ, M)
Yq.p
’ - 2 VaTEED(Q, A7), (6.2)

Y40

The first 3, ,, on the right-hand side of (6.2) stands for $2_; >, ¥pey-

The second }_, ., stands for 23:1 Y4=02 p=0 . Here, no upper limits are
p+g#0

placed on the indices p and ¢. Terms are retained only for which p and ¢

are so small that (5.2) is true. The E® ’s on the right-hand side of (6.2) are

given by [1, egs. (4.47) and (4.61)]:

Cr kT“I)2J'(kTMa) E‘YTA‘[fb

kpq‘/—{ ZZ 222, J2 1 (2rs)

r=0 s=1
ATE TJ (kTE )F'vTEtb

ZZ (ATEa)(z!2 — r2)J2(xL,)

r=1s=1
sm ¢0 LTE)SJ (A'Z,EG)ETEZ
Z Z 773 ( 7'8 r2)J1?(x;'S) }

r=0 s=1

0o 00 kT" J' kT‘, )F-VTM«:B
E®(0, M ryTE _ / epe,, & (
(0 { ZZ )7"2 J+1(Ir5)

r=0 s=1
}\,TE)ZTJT(kTE )L‘YTEQ’)

ZZ TEG,)(”L' 7'2)J2(L" )

r=1s=1

E®(Q,M;TM) = ~

(6.3)

éo kTE)SJ (ATE )—E—“YTE:
sm ZZ )E ) } (6.4)

r=0s=1 ~

(o) I-Q G'-I

In (6.3) and (6.4), 7ZF is given by (3.58). Furthermore, E*TM? pTE?
4.76

E"TE? are given by [1, eqs. (4.74)-(4.76)):

TA"( :)) + :Tl\['le—-yz;hl([la_z)}

: ¢7'rJ, (kM p)
: {upé”er(k?,Mp) - ‘—‘«b__k'ﬁu—p‘_‘

, and

ETMé = {—zTMl sinh(;
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¢12LTMJ (kTM

T™

p)
7 (6.5)

+{ TM1 Cosh(7TA1(L3 —z)) + zTAl2e-.~,r7;M(L3__,)} u,

ETES {_ZTEI sinh(‘y,_, (Ls - 2)) + TE2, 7,,E(L3-z)}
¢‘Y27‘Jr krTsE .
A Tl i (6.6)
E»,TE: - { TE3 Slnh(‘)’};E(Lg, —2)) + ZTE46—~/3;E(L3—Z)}

¢13r_]r kZ'sE ’ ) _
(”{9-7%“ﬂ+%d%M?M- (6.7)

The ¢’s in (6.5)—(6.7) are given by [1, egs. (E.10)-(E.13)]:

o = 7 {ef o) - s} )
67 = 2 cos( L) 4 6 sin( L) (69)
#° = —(=1)" {¢,‘;‘” cos( L) — o sin( L= )} (6.10)
7 = o9 cos(riw) + 6P sin( L) (6.11)

(] [~

The y’s on the right-hand sides of (6.8)-(6.11) are given by [1, eqs. (2.15)
and (2.16)]:

y't=(r—-¢)z. + 3 (6.12)

ol o

* = prot o, (6.13)

The ¢,’s on the right-hand sides of (6.8)-(6.11) are given by (3.40)~(3.43).
For simplicity, we assume that z < —¢/2 so that [1, eqgs. (4.77) and (4.83)]

ZTAWI — zTEl = zTES =0. (614)

Since z < —c/2, the remaining superscripted z’s in (6.5)-(6.7) (namely 27?2,
zTE2 and zTE4) are, as stated in (1, page 34], given by their expressions in
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[1, Appendix F] with 2% replaced by zero. For z,, < ka, we have [1, egs.
(F.26) and (F.35)]

262 q’s'

- = [{sin(qs_c) cos( 35, LT) — 28in2(T)sm( ’ L+)} /(2 qs—c)]
5+
2

.+ [{sin(q“c) cos(B%, L) + 2sin (q

LT E4
L

) sin( sta“)}/(‘zq“c)] (6.15)

= -
(&

- [{sin(qTE'c) cos(BTELT) — ‘25in2(q

TE-

°) 81n(ﬂTEL+)} /('2q”~‘-c)]

TE+C

)sin(5L Em} /(2475 )] .
(6.16)

+j [{sin(qTE+c) cos(BTELY) + 2sin’( g

I

For z., > ka, we have [1, eqgs. (F.33) and (F.42)]

.62
= = {esinh(v8, L3) = (=1)f,esinh(8, (14 = N}/ {(am)? + (4,007}

(6.17)

ZTE4
— =qr {sinh(+7,7L3) = (=1)7 sinh(+(LF = e))} / {(a7)? + (+7F<)*}.
(6.15)

In (6.15) and (6.17), é is either TM or TE.

6.1.1 The Quantities E"7M¢ E'TE? and ETE:

In this section, expressions (6.5)-(6.7) for EYTM¢ pTES and EYTE? are first
reduced by means of (6.14), and then expanded by means of (6.8)-(6.13).
Next, the —z-traveling modes of the circular waveguide are introduced. Fi-
nally, the expressions for E"TM*¢ E'TE? and E'TE? that were obtained by
means of (6.8)-(6.14) are recast in terms of the —z-traveling modes of the

circular waveguide.
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Reduction of (6.5)—(6.7) by means of (6.14)
Substitution of (6.14) into (6.5)-(6.7) gives

E'yTIUqb _ ZTM26—‘7,?;M(L3—2)

1 d)'yl r Jr kZ;M p ¢12 kz;M Jr k,T;"
R (6.19)
_ _ ¢7*rJ, (kTE ,
E‘YTEqS — zTE26 YIE(L3~2) {gp__k_T(Ep___Q _y_d’gb‘yl']r(k;l;Ep) (620)
~3 Jr kTE
ETE: = GTEiemF (L) 1)y {g,,———————"” rkT(E: 2 +%¢W4J:(k£’5p)} (6:21)

Expansion of (6.19)~(6.21) by means of (6.8)—(6.13)

Substituting (6.12) and (6.13) into the arguments of the trigonometric func-
tions in (6.8)—(6.11) and using [2, formulas 401.01-401.04], we obtain

cos ('"f*) — (- {_cos ( 7 ) cos(rg) — (=1)7sin (of ) sin<r¢)}(6-22)
ry7t r r
sin ( 3;30 ) = (-1)" {sin (2:0) cos(rd) + (—1)" cos (Q:O) sin(ré)}(6.23)

Substitution of (6.22) and (6.23) into (6.8)-(6.11) gives

oM = (=1)" {(—1)7+‘¢>;1 cos(r¢) + 65 sin(r¢)} (6.24)
67 = (—1)7 {$}2 cos(re) + (—1)"4}' sin(r¢)} (6.25)
87 = (=1 {(=1)"+¢!2 cos(rg) + 6 sin(re) } (6.26)
67 = (=1 {4t cos(rg) + (=1)"¢"*sin(r¢) } (6.27)
where
¢t = ¢V cos ( 2'1’) — ¢ sin (h) (6.28)
b ) rh
¢l = ¢{P) cos (220) + ¢V sin (Ll‘o) (6.29)
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o)) o
#t = ¢l cos ( rb ) + ¢ sin ( rh ) (6.31)
P P 2z, 2z,

Substituting (6.24)—(6.27) into (6.19)-(6.21), we obtain

(4

. J k
{u, J(KLM p) sin(ro) +_¢" ( ”uﬁ;"s( rg)

™ T™ :
+u krs Jf(krs P) SIH(T¢ }+¢b2{

-z

w,J! (kTM p) cos(rd)

—pr

7;1;1\!

rJ(kIM p) sin(r¢) ETM I (kTM p) cos(ré)
B KTHM , t ST } }

E’yTE‘aS — (_1)—yr TE?2 ——y,T,E(L3—z){

E .
R R R L)

¢b2{_prJ kaT;cos(r¢) A kTE ) sin(r) }} (6.33)

E’yTEz = (_1)71- TE4 —-‘y,T,E(L;;—z){
rJ.(kTE p) cos(r¢)

oy (g — () sin(ré)} + (—1)7
.TE :
S, IO | 0T costre)} . (639

The —:z-Traveling Modes of the Circular Waveguide

The modes of the circular waveguide that travel in the —z-direction are
ETMe= pTMo=" pTEe= and ETE°~ given by [1, egs. (B.2), (B.27), (B.36),

=%rs Y ==rs
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and (B.56)]
ETAIe— — { ZT\[co T\lc( ,¢)+y. ( ’1‘;‘1) wT‘h( 45)}873‘_;": (635)

—1'3 ]Cb’é

et (6.36)

E?-;"o- — { ZTVCO_.T-:,MO(P, é) +E2(kT‘1 2‘#’3‘3”6’(:0 é)} TM

]w'ﬁ
ETFe = efEe(p, g)e (6.37)
EIF = e (p,0)e™ (6.38)
where [1, egs. (B.23), (B.7), (B.22), (B.30), (B.33), (B.531), and (B.62)]
AIM
ZTMeo _ Trs (6.39)
Jwe
. € J. kT" cos(ro
YTMe(p 8) = (k" p) cos(r¢) (6.40)

T xraJr+1(xra)

T\Ie 5y — — & —_1""_
€y (p’o) - \/—r,_(aJr+1(Ira))

TM
{0 cos(r) -, PRI, (6
, 2 J, (k™ p) sin(ng)
¢,-T,M (p o) = \/; T 7]“(1. ) (6-42)
npJn np
t’) 1
TA\’O _ :
—rs (p’ é) T (aJr+1(1?,,))
kT\I
- {upJ:(kf;"p)sinw 4y, W) C‘”“")} (6.43)
TEe(p é) €, kz;E
Ere 1P (22 — r7) \ T (z0,)
Jr kTE : ; . ’
{_ Uee 2)5i000) o u(TEp) cos(ro)} (6.44)
2 KTE
TEo _ rs
& (P 0) = ~\ T T (L(z@))
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J.(kTE ) :
_{ﬂpr ( lgb):;os(rcb) + uyJI(kTEp) 51n(r¢)}. (6.45)

In view of (6.39) and (3.49), substitution of (6.40) and (6.41) into (6.35) and
(6.36) gives

- ZTMeo
ETMe= — \/§<__rs____) e"rT«Mz{leJrl(k,T,“p) cos(r¢)

adry1(Trs)
rJ (kfMp)sin(rg) = kLMJ (KM p) cos(ré)
—U KTM , T, T } (6.46)
TMo- _ 2 Z":‘l;hleo ,?;MZ 1(1.TM .
ET == T (@) e’ {Lthr(’»rs p)sin(r¢)
rJ, (k5 p) cos(r¢) kEM T (KLM p) sin(rg)
u VT, +u, AT } (6.47)

Substituting (6.44) and (6.45) into (6.37) and (6.38), we obtain

.TE
ETEc— = r ( ,"ra )e’YrTsEZ

e (@2 = 1) \Tr(al,)

rJ, kZ;E sin(r¢ ,
{_ s o ’+u¢J,<k;-’,Ep)cos<r¢)} (6.48)

.TE
ETEo— - _ 2 ( I"rs )e'y,T,Ez

s w(@y — %) \Jo(ak,)

rJ, (k1,7 p) cos(rg)
1 kTEp

+ 1, JU(KTEp) sinw)} (649)

Expressions for EXTM%, ETE¢ and E'TE? in Terms of Waveguide
Modes

Equations (6.46) and (6.47) reduce (6.32) to

~+TM¢ ~r T ZTM2
E = (_1) 6— ZTAlco aJr+1(xrs)
T rs

{$2ETMe= 1 (—1)7gh ETMo-} e BV s, (6.50)
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Equations (6.48) and (6.49) reduce (6.33) and (6.34) to

E‘YTE(# — (__1)11' 7((1"1-3 — 7'2) (zTE2Jr(‘r:-s )

{( 1) (pglE?_;Ee- ¢b2EZ;Eo—} e~ Tre TELs (651)
z r W(Iig _ 7'2) ZTE_‘JT(I:-S
E‘YTE - (—1)7 €, ( kTE
{(—1)gh ETEe 4 SR ETE ) oL, (6.52)

6.1.2 Expression for E®(Q, - MY — M) in Terms of
Waveguide Modes

In this section, expressions (6.50)-(6.52) for EYTM?  pTES and ETE? are
substituted into expressions (6.3) and (6.4) for E®(Q, Q_[_;’ZM) and E®)(0,

M?TE). The resulting expressions for E®q, i’—;{‘”) and E®)Q, M‘;{E) are

==pq

then substituted into expression (6.2) for E®(Q, — MM — A1)y,
Substituting (6.50)-(6.52) into (6.3) and (6.4) and using (3.49) (3.51),
we obtain

E®)0, ,‘[‘YT\J _ 2xb { Z —r-i STM2
B 1 2 cZTMeo
pq r=0 =1 s
ATM > % 2
(GPER + (CITGERT) e — g T (- D
r=1

s=1C\/2'% —7?

rz ing,) &, i &
(-1 g ELP — P ELPT) e Ls+”§(s‘“, )Z(-—n e

¢° r=0 =
) /2 TE4

= 17,_,Eac,/1:’2 r?
LTAM2
(3) ~TE €pq {PC €r
EXQ.M;, %) = kqu\/ \/ r-o \/ Z cZT e

(( )7¢b4ETEe— +0b3ETEo—) e—‘Yz;ELg} (6.53)

p —=rs

0 o]
b2 pTMe o (_1y7 bt pTMo=) =MLy _ pc
(BB + (P ) s 4 Zf_-‘
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(4

(7SR - L) e — g ($22) Sy 2

r=0 ~
00

s=17] Eac\/;"2 —r2

Substitution of (6.53) and (6.54) into (6.2) gives

/2 3
E(a)(Qa —M(l) —1(2) \/‘ Z { ZTI\leo

( STMe ETMe— + STMO ETuo—) +IML,

=rs =rs

( STI;Ee E};Ee' + STEo ETEo—) e—*r,,ELg} (6.55)

12 TE4

((—1)7gl ETEe + ¢13ETE") e'"rTfLs}. (6.54)

where

2 zT]\I?
SIMe = Z Z ( ) Z ‘5qu1¢22 (6.56)

p=0
p+q#0

c

2 ZTM‘Z
STMo —-Z(—l)"z:( ) Yo 6Cid) (6.57)

=1 g=0 p=0
p+g#£0
TE 1 2
STE = =3P ¥
rs — T y=1 g=0 p=0
p+9#0
~TE : .TE 2 : bd
() gt - (E22e) (Z2) 28 b (g5
c P o, c yIEq
—1 2

S = ==—=—=3.3 >
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ZTEZ 52 sin éo zTE~l 1:3 C2¢bg )
{r (55 cuer+ (22 )( —) =R} 6

N
o= 3V (6.60)

€y = (=17 (Vg™ + (BVTE) (6.61)
C, = (=1 [ (BEyyrT™ ~TE 5
2 = (— ) ( b ) Pq - q‘/pq . (66"‘)

In (6.61) and (6.62), V)" = 0 when p =0 or ¢ = 0.

6.2 The Electric Field E®(J™, ()

Since zg; < ka, we have, from (3.57),

7011\[ = ],BT‘I. (663)
Substitution of (6.63) into {1, eq. (3.10)] gives
f)]'e—jﬁoTl“Ls

\/_a 6J1
—uzkgleo(kgMP)COS( T"(Ls—z))} (6.64)

E(3)(llmp 0) = u, 3l “Jl(k&“p) sin( OTIM(LS -2))

where B5M is given by (3.59).

6.2.1 Expression for E®(J™ 0) in Terms of
Waveguide Modes

Since, as stated in [l, page 37|, the only z-traveling wave contained in
E(3)(iimp,ﬂ) is the unit amplitude z traveling T My, wave, we suspect that
EB(J™® 0) contains only T Mo, modes. Expression (6.64) for E®(J™P, ()
18 recast as

T h . T.
E(J)(limp’g) — ”J I"T" )+ll l"g."'] (kOl"p }e—jﬁorle

\/_aJ, (zo1) { o Jwe
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e~ 205 Ls ML kI p)  RIMI(kIMp) N jpu
IR S ~Zo1 Y1\Mor FJ 201 YO\*o1 P/ B4y =
+\/1_raJ1(xm){ L we T Jwe }6 - (6.65)
From (6.40) and (6.41), we have, in view of (3.46),
J (kT‘up)
TMe _ 0\™o1 _ L
o1 (P 9) = NCZAES (6.66)
J! (/\T‘[ )
TJ\Ie 0
(p’ QS) - ~p\/'_aJl .T()l) (6'67)

so that (6.65) becomes, with the help of (3.51) and (3.49),

E(3) Jlmp Q {ﬂT}W T]\Ie p’ ¢)+ u, (ATA[)szA‘Ie( 796)}6-“35’1\12

Jwe
+e—2]ﬁol La{ ‘Bg'{\l Tx\le(p ¢)+ (l“g'lju)zd"]“hB P, é)} 38T z 668)
H ]w
Substitution of (6.63) into (6.39) gives
B TMeo
— =25 . (6.69)

WE

Substituting (6.69) into (6.68) and recalling (6.63), we obtain

E(S)(llmp Q) EOMe++ --2,7;301 ET’\Ic— (670)

where EIMe* and ETM¢~ are given by [1, eqgs. (B.1) and (B.2)].

6.3 The Electric Field E®

Since (6.47) gives

EIM-=0 (6.71)
and since (3.57) gives (6.63) and
TE -
B3 —]ﬁu ) (6.72)
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substitution of (6.53) and (6.70) iuto (6.1) yields

E
ZTA\Ieo =01
[4)

2r b cTEe nTEe- TEo nTEo— —jBTEL .“)"b E : €r
+‘) —(511 Ell + QU Ell )e 1Py 3 +‘) —_— 7
c C F4

r=0

L 4
{ Z (STMe gTMe= | GTAMo pTMo—) =T} L

f TMe ,—3;8TML
(3) __ pTMet+ 9 7"_1’501‘ e P ™ -2jB8EM Ls TMe-
E - E.o] + 12 c +e

=rs

s=1 Z’_T;A\leo
(r.s)#(0.1)
TE - ~TE —\ -~ATE -
+ Y (STEETEe 4 STEopTE oAl | (6.73)
s=1
(r.8)#(1.1)

The only z-traveling wave on the right-hand side of (6.73) is the incident
TMet is given by [1, eq. (B.1)]

wave whose electric field Ey;
TA\2 5T Me
(koi™ )’ doi (/’~é)} e~ M= (6.74)

TA e+ _ TAMeo TMe )
Ey, = { o e (p, )+ u,

Jwe
The time-average z-directed power associated with EZ** is. as given by
a formula similar to (5.31), ZIM*°. Moreover, _E_gl'"“' has the phase factor

e~ Ls when = = La. However, the normalized electric field _Egl-"“efﬁc%‘”“/
v/ ZEMeo has unit power and no phase factor when z = Lj. Thus, the z-
traveling wave part of E(®eif6i'"Ls/,/7TMeo has unit power and no phase
factor when z = L. Multiplying both sides of (6.73) by %' La /\/ZTMeo
we obtain the normalized electric field E®ei"'La [ /7TMeo given by

JIML ML TMe . —j3M L

efor ™ Fo - [ 2 ’ FTMe+ _ Coy e ™ pTAMe-
ZT.\Ieo = ZT.\Ieo =0l ZT.\lco =l

V ot V 401 V 4ot

e=IA1"La TEe TE TEo -TE
er e— “TEo g, o-
+ | ———= (CTFLTE + P El )

sTEeo
}11 ¢
20 o0 e—‘Yz;ML" TAf TAf TAf s
Me T Me~ Ao i Mo-
-2 2 ——“—,l—ET—.uj—’l (Cr, ETMem 4 ¢TMopi M)
r=0 s=1 g
(r.V£(0.1) e
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0 (o) —‘y,T,EL:;
+> % ¢ (CTI;EeEZ;Ee— + Cg;EoE_Z;Eo—) (6.75)
r=0 o=l Y25
(r8)#(1,1)
where ZIMeo is given by (6.39) and [1, eq. (B.54)]

TE
yTBeo = oo (6.76)
Jwp

In (6.39), 7™ is to be replaced by j3LM. In (6.76), 71F is to be replaced
by jBTE. The C’s in (6.7,) are given by

[mb [ SIMeeildi La
CIMe = —1-2y/— <~———°1 e (6.77)
¢ 01

21h YTEeo )
TEe __ = 11 TEe j8TML,
CTE = 2| 2, | iy STEe (6.78)
01
,r)ﬂ.b ’ YTEeo i
TEo __ =" 11 TEo j5TM], g
Cu =2 C ZTI\'ICO Sll efror (6‘9)
01
TM TAM
CTAIe = -9 2rb C_" ers‘ ©0 (Srs ‘ ) 6J'B;)r]ML:s (6 80)
s = \/ ™ ] ’
¢ 9 \ ZOl eo Z};’\Ieo
TM TMo
CTMO — _ 27rb 6—1- lZ7'8 €o ( STS ) 6jB0Tl.\1L3 (6 81)
rs -~ TM TM '
¢ 2\ ZOI eo Zra eo
9 TFEeo .
CTE = 2/ —“”b,/ﬁ.l Yo | grpecingiies (6.32)
9 7TMeo “rs
c V< 01
Iz TEeo .
C;_I;EO =9 2rb f_’: D/rs | TEoeJﬁg‘]MLg (683)

c 2 ZOTIA\leo rs

The magnitudes of the squares of the constants CIM¢, CTE¢ and CTE° are
time-average powers (see Section 6.3.1). The minus sign which precedes the
EIMe= term on the right-hand side of (6.75) makes the phase of Cg;'® equal
to the phase of the coefficient of eZM¢(p, ¢). See (6.35). The ETMe~, ETEe-

=rg
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and ETE°~ terms in (6.75) were patterned after the EIMe~  ETEe= and

E{IE‘” terms, respectively.

6.3.1 Time-Average Power

The time-average power of the normalized electric field E®eifeMLs |, [ 7TMeo
of (6.75) is given by a formula similar to (5.31). This power consists only
of the time-average powers associated with the ELMet ETMe=  pTEe= an4
ETE°~ terms on the right-hand side of (6.75). The time-average z-directed
power associated with the EXM¢* term in (6.75) is 1 W. The time-average
—z-directed powers associated with the ELMe= ETEe= and ETF°" terms in

(6.75) are |[CIMe|?, |CTE¢|?, and |CTE°|?, respectively.

6.3.2 The Coefficient C{M*

In this subsection, CT*e of (6.77) is expressed in a form suitable for calcula-

tion. In (6.77), STMe is given by (6.56) in which the quantities z7*?/¢ and
45;2 appear. Comparing (6.15) with (3.76), we see that, since z¢; < ka,

z52 1 A5
==3 ¢, (6.84)
where [G'z] o1 1s C;’Z when 7 = 0 and s = 1. Here, § is either TM or TE.
Setting r = 0 in (6.29), we obtain
¢ = o2 (6.85)

Substitution of (6.61), (6.84), and (6.85) into (6.56) gives

vie A i pC o
Soe = ZEO[GQT"]01 ‘:6 €pg 2 (qvpf"’nt(j)\/p;”). (6.86)
y=1q= =
! pi#o

The quantity ZIMe in (6.77) is given by (6.69):

™
ZIMe = —"ﬂz’ (6.87)
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Substituting (6.86) and (6.87) into (6.77), we obtain

TAfe 2 Tatentr | Vor o e
o=+ e v o
=1¢=0 p=0 U
p+e#0
. V—yTEeJﬁm L
+Cg;’t;q ATE (__n____) } (6.88)
where
CTMenTM _ mb (& ge [GTM] o (6.89)
01,pq c \BTM | TP 7 Jo 7 ’
Me b k pc ~
CoTﬂq 7 = Py ( TM) (?) €pq [GqTM] o1 ¢;2)' (6.90)

6.3.3 The Coefficients C7f¢ and C7E°

In this section, CTE¢ of (6.78) and CTE° of (6.79) are expressed in forms
suitable for calculatlon In (6.78) and (6.79), STE® and SITIE" are given by
(6.58) and (6.59), respectively. The quantities zTE"/c and v%Fa appear in
both (6.58) and (6.59). Comparing (6.16) with (3.108), we see that, since
z3, < ka,
ZTE4 ] A1)
=3 [ef ], (6.91)

Cc

where [G’g“)]u is C}g“) when r = 1 and s = 1. From (3.58), we have

7{15 = ]ﬁlTlE (6.92)

Substitution of (6.61), (6.62), (6.84), (6.91), and (6.92) into (6.38) and (6.59)
gives

STEe =

2
i pc
T as & el (s (5)w)

p+q#0
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. (sin ¢0) [Gg‘*)] zll¢b4 ((E) V'yTM _ qu’;TE) }

% AT, (6.93)

STEe — E DS epq{ GTE] o ( VoTM | (E) V"TE)
2\/ —1i14=0 p= n b/ "
o= piqgo

~ (sin ¢0) [634)] zi2¢ () V™™ - qu?,TE)}

$o BlEa

The admittance YIE* in (6.78) and (6.79) is obtained by substituting
(6.92) into {1, eq. (B.54)]:

(6.94)

TE i
yZTEeo — g (6.95)

Substituting (6.87), (6.95), and (6.93) into (6.78), we obtain

2 TEenTM V‘YTMemTMLs
TE ey
cire=yy ¥ {orEpm (22

¥y=1¢=0 p=0 n
p+9#0
VATE ¢ib%M La
+CEenTE (———”" i’o } (6.96)
where
erT] 2rh .
oRE™ = 22\ B = CT e
pc. [sind,\ i (G(4))11¢M
+<;)( = ) Wl } (6:97)

2rb pc. . ~
CTEeATE _ / TM ~ _1{(7)')(05 )16y

_ (sxn@) ””““'”“’) it}
q ¢o Bll a .

(6.98)
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Substituting (6.87), (6.95), and (6.94) into (6.79), we obtain

TE 2 TEo~TM V"TMCJﬁ“
— 0, Jpg YT
cE-yy ¥ {ckE
4=14¢=0 p=0 n
p+g5#£0

VaTE IBIML;
+Cil‘lli,:;,'yTE( rq en X } (6.99)

where

27b 1)"
TEo~NTM L qu TE b2
Cii = — C ¢>

- (%) (Si:fo) :tu(ﬂ(;;)u&s} (6.100)

) TE
Clj;EmTE = V i B:rv \Fz {(pc) (GZE)ud’;z

(4) b
+q (SIZ%) xu(i )15 } (6.101)

The ¢,’s in (6.97), (6.98), (6.100), and (6.101) are obtained by setting
r =1 in (6.28)-(6.31). From (2.8) and (2.9), we have

- = .102
2% o (6.102)

so that ; ;
sin (2%) =g, (6.103)

Assuming that ¢, < /2, we have
b b\’
Cos ('21)0) = 1 - (:?-;) . (6104)
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Substitution of (6.103) and (6.104) into (6.28)-(6.31) yields

b
¢ = \ 1 - (2a) ol — (:2;) ¢
b b
=\ (‘2‘) 4+ ()
o2 1o () g0 - (L) g
%o =\'"\aa) % "\2a) %
b b\ o, (L) 40
¢o=\1-% ¢p+£¢p-

34
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Chapter 7

The Tangential Electric Field
in the Apertures

The tangentlal part of the electric field in the left-hand aperture A is called
E_('“ (#,z). The tangential part of the electric field in the right-hand aperture

Aj is called Ei’”’(q&, z). These tangential parts are given by
EM(g,2) =u, x MY, y=1,2 (7.1)

where u, is the unit vector in the p-direction and M s given by {1,
egs. (2.11) and (2.12)]. Substituting [1, egs. (2.11) and (2.12)] into (7.1),
we obtain

EMg2) =Y S {V"TM (u, x M;T (4, 2))
=0 =0

p+9#0
FVTE (u, x MITE(4,2)) } (7.2)
where the double summation is truncated as in (5.1). In (7.2),
V,,';TM =0, p=0orqg=0. (7.3)

Substitution of [1, egs. (2.13) and (2.14)] into (7.2) gives

E{*(4,2) = uy(-1)" (f)
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5 % {ygrvengr oty 4 viTEIE ) }

=0 =0
p+g#0
Y Y Ve o)+ TETE (24 | (1.4)
p=0 g¢=0
p+g#£0

where y?* and 2t are given by [1, egs. (2.15)-(2.17)]
b
y’y+ = (2 - ’y)ﬂ'.’l)o + (—1)7¢Io + 5 (75)

=24 g (7.6)

where, from (6.102),
b

26,
Now, T;ﬁf and ez;;y are the y- and z- components of eTqM given by (A.10),

and eypq and ezpq are the y- and z-components of E given by (A.23) so that

(7.4) becomes

E*($,2) = (-1 )”"7f\/E (‘f‘)

Al Py aTr +1 ‘yTE) pry™t . qmwz?
PPN (k b)( pUp T te ) cos Ty sin T

p=0 g¢=0
p+q#0

€€ w7t rzt
—y.9 /Pq ~TM PqTE)-PJ q
u, 27w (k,,,,b) ( Voo o+ prq sin = — cos -

n—ﬂ a=0

Ty =

p+Ha#EL
(7.8)

We want to normalize E_g'h)(d), z) of (7.8) by dividing by —|EIM | s
where the subscript “rms” denotes the root mean square value of the trans-
verse part over the waveguide cross section at z = 0. Recall that EOT{"” is
the electric field of the z traveling wave in the circular waveguide. We choose
to divide by —|EXMe*| ., rather than |EIMe* | .. because the z-directed elec-
tric current associated with EJM** is negative at (p, z) = (a,0). This electric
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current is given by —u, x HoM** where H3'** is given by [1, egs. (5.2) and

(5.9)].

Accordmg to (6.74), the transverse part of EIMet jg zIMeocTMe( )

.e~38M2 5o that

TMe+ TMeo 1 TMe TIWe 12
|ER = 12525 [ [ pdp [ as (e B}

One of the orthogonality relationships in [1, eq. (B.64)] and
ZTMeo - WﬂleM

reduce (7.9) to

IETMe-}-l — Uﬂ&M

=01 rms \/7_rka .
Equation (7.10) was obtained by replacing 1/(we) by n/k in (6.69).
tution of (7.11) and (7.5)-(7.7) into (7.8) gives

E(A’Y)(QS’ ) b k sing,\ _.grM
IE_OMe+| = 1—‘¢(—1)‘727r —c-— (W) ( ) IBM L Z Z
rms 01 S

p+q#0

' —_1_ <B‘_l_> V;Y;TM eJ'ﬁg;MLs 3 (q—a> VP‘ZITE eiﬁngLa
kpqb b n c ]
T

.COS{(;% (-1)"¢+(2—~)m)+ p_} sin (‘17’2 + i‘;)

T
2 c

b k T M €€
2; ,/.__ ~3Boy" L3 b |
+u, 2w - ( oTxM)e Z Z 1

=0 q=0
p+9#0

—_1.— qa V'yTAWe]ﬁg; L3 N (pa) V;)‘Z]TEejﬁg‘lELs
b Ui b n

qrz  qrw
{(%o) 1g+ (2 =) )+7}°°5(T+’2“)'

(7.9)

Substi-

[€p€q
4

(7.12)

When z = 0, the ¢-component of (7.12) is ES*"(4,0)/|ELE* | ms given
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by

E,g,A‘Y)(¢,0) b [ k sin @, (656,
282 = (~1)2m| 2 | = =IO Ly €p€q
B~ VA ) o XXy
p+q¢0
’YTMeJﬂol Ls (qa ) Vp’ZJTEeJﬁ(%E Ls
k,,qb c n
- COS {(% ( ¢-;(2 ‘Y)W) + p;r}smg (7.13)

When ¢ = (2—7), the z-component of (7.12) is E{*"((2—7)~, 2) /| ETMet | g
given by

ngh)((g - 5)x, z) b _igTM /6 €
E'T}He+ =2 ﬂTM) 3o Ls Z Z P +£=
L—Ol hnm

p=0 g¢=0
P+9#0
kyqb U b n
-sin 2= cos (ZK + gl) . (7.14)
2 ¢ 2

98




Chapter 8

Numerical Results

A computer program was written to calculate the time-average power trans-
mitted into the rectangular waveguides, the time-average power reflected in
the circular waveguide, and the ¢ and z components of the electric field in
the apertures. This computer program will be described and listed in a sub-
sequent report. Some numerical results obtained by means of this computer
program are presented in this chapter.

When the time-average incident power in the circular waveguide is unity,
the time-average power transmitted into the rectangular waveguides is P,
given by (5.49) and the time-average power reflected in the circular waveguide
is called P,. According to the discussion in Section 6.3.1,

Pr = lcg;}\rfel2 + ICITlEe 2 + lc'lTlEo 2. (81)

Figures 8.1 to 8.5 show plots of P, and P, versus ka for various values of L3
when

= 1.1

—_
?[)
()

~—~

= 0.5

Sl Qo

The plots of Figs. 8.1 to 8.5 are for L3/[AIM];,-245 = 0.35, 0.40, 0.45, 0.50,
and 0.55, respectively. Here, [\IM];,-205 is the wavelength of the T My,
mode in the circular waveguide when ka = 2.95:

2ma
[/\(jjlhllka=2.95 =

. 3.3
V(2.95)2 — 22, (8:3)
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1.0 coaqd o e e by
1le. 2 )
J -
- B
P,P. 05 — -
4 -
_ P. i
_'Pt =
0.0 TTT T[T T T T [T T T[T I v [rirT + ka

285 290 295 300 3.05 3.10
Fig. 8.1. Plots of the ratio P, of the transmitted power to the input power
and the ratio P. of the reflected power to the input power when
L; =0.35 [/\&M]k oes’ The input power is the power of the inci-
dent T M,; wave in the circular waveguide. P, + P, = L.

1.0 NERERNEE RN NN RN

0.0 TIIT[TIIﬂTIIj]—IIII‘TIII‘;ka

28 290 295 3.00 305 3.10
Fig. 8.2. Plots of the ratio P, of the transmitted power to the input power
and the ratio P. of the reflected power to the input power when

L3 =0.40 [Ag{"’]k _,o The input power is the power of the inci-
dent T M,; wave in t'?xe circular waveguide. P+ P = 1.
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1.0 NENE RSN R RN NN RN BN
dlp u
4 o
Ptapr 05— —
-] e
4l P, _
0.0 IIII]!III]!III]IlII‘lTT1ﬁka

285 290 295 3.00 3.05 3.10
Fig. 8.3. Plots of the ratio P, of the transmitted power to the input power
and the ratio P, of the reflected power to the input power when
L3 =0.45 [/\5{"] faz.05" The input power is the power of the inci-
dent T My, wave in the circular waveguide. P, + P, = 1.

1.0 NENEEEENENEENENNENE ANER
4\p. -
- _
Pt’Pr 0.5—' —
—P,
0.0 L A A R R O + ka

28 290 295 3.00 3.05 3.10
Fig. 8.4. Plots of the ratio P, of the transmitted power to the input power
and the ratio P, of the reflected power to the input power when
Ly =0.50 [/\g',‘“]ka_z o The input power is the power of the inci-

dent T'M,, wave in the circular waveguide. P, + P, = 1.
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1.0 bt v by g g by
4P L
] L
— -
Pt’Pr 0.5 — -
_Pt L
J B |
0.0 L R + ka

28 290 295 3.00 3.05 3.10

Fig. 8.5. Plots of the ratio P, of the transmitted power to the input power
and the ratio P, of the reflected power to the input power when
Ly =0.55 [/\g{"]k res’ The input power is the power of the inci-
dent T My, wave in the circular waveguide. P, + P, = 1.

With the value of z¢; given in [5, page 2], (8.3) becomes

2ra

Aot lkaz2.05 = : = 3.67738806a.  (8.4)
J(2.95)2 — (2.40482556)?2

The value ka = 2.95 was chosen because it is fairly central to the range of
values of ka in Figs. 8.1 to 8.5 (see the next paragraph). The values of L,
and L, do not matter because the loads Z; and Z, were chosen to be matched
loads, that 1s,

Zy=2,=2TE (3.5)

The curves of Figs. 8.1 to 8.5 are plotted for the entire range of ka such
that only the T E,q mode propagates in the rectangular waveguides and only
the T My, and TF,; modes propagate in the circular waveguide. Since only
the T E1o mode propagates in the rectangular waveguides,

7 < kb < min (‘27r, ﬁ) (8.6)

c
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where “min” denotes the minimum of the values in parentheses. Since only
the T My, and TE;; modes propagate in the circular waveguide,

zo < ka < 73;. (8.7)
Substituting (8.2) and (8.3) into (8.6), we obtain
2.85599332 < ka < 5.7119366. (8.3)
Taking the values of xo; and x4, given in 5, pages 2 and 32], (8.7) becomes
2.40482556 < ka < 3.05423693 (8.9)
Combining (8.8) and (8.9), we have
2.85599332 < ka < 3.05423693. (8.10)

In Figs. 8.1 to 8.5, P, approaches zero as ka approaches 2.8559932. This
is expected because the T E)q mode, which carries the transmitted power,
ceases to propagate when ka becomes less than 2.8559932.

The numerical data of Figs. 8.1 to 8.5 were computed with

BKM = 15 (8.11)
XM = 40. (8.12)

The parameters BKM and XM are not written with italicized letters because
they are input variables for our computer program. The parameter BKM is
introduced in (A.1) and used in (5.2). The constraint (5.2) on the values of
p and q determines the order of the moment matrix [Y! + Y? + Y3] which
appears in [1, eq. (2.22)]. When BKM = 15, the order of the moment matrix
is 32. The parameter XM is mtroduced in (B.4). The effect of XM is to
truncate the doubly infinite sum Y22, 352, that appears in (3.1)-(3.4). The
truncated sum is §_ /3% 5~°max where sp,,., which depends on r, is the largest
value of s such that

jO,aSXMs r=0 }

Jhs S XM, r=1,2,-- (8.13)

Assuming that XM > jo 1, Tmax is the largest value of r such that j; ; < XM.
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Some of the time-average incident power is transmitted into the rectangu-
lar waveguides. The rest of it is reflectcd in the circular waveguide. Therefore,

P+P =1 (8.14)

The plots of P, and P. shown in Figs. 8.1 to 8.5 do indeed satisfy (8.14).
Because the -values of P, and P, computed separately from (5.49) and (8.1)
satisfy (8.12). we have some confidence in their accuracy.

The magnetic field due to the impressed source J'™ radiating in the
circular waveguide with the apertures closed is H®(J™P Q) given by [1,
eq. (5.11)]. The electric current at z = 0 on the wall of the circular waveguide
associated with this magnetic field is J given by

Qe—jﬁg‘lMLa

J=-u, cos(BIMT5). (8.15)

L
The magnitude of J of (8.15) is maximum when Lz = 0.50JM where \IM is
the wavelength of the T' My, mode in the circular waveguide. If an aperture is
put where the electric current would otherwise be maximum, the tangential
electric field will be large in this aperture. A large aperture field gives a large
transmitted power ;. Thus, we expect P, to be large at ka = 2.95 in Fig. 8.4
because Lj is then equal to 0.50M. Actually, P, is even larger at ka = 2.95
in Figs. 8.2 and 8.3 where L3 = 0.4ATM and 0.450IM, respectively. When
ka is held at 2.95, the curve of P, versus L3/AIM shown in Fig. 8.6 attains a
maximum at a value of L3/ATM somewhat less than 0.5. This phenomenon
may be due to the finite extent of the aperture in the z-direction. Note that
P = 0 at L3/ \EM = 0.25 in Fig. 8.6. This is expected because the magnitude
of J of (8.15) vanishes when L3/A\IM = 0.25. In this case, the aperture has
little effect because there is no flow of electric current to stop at z = 0.

The data for the plot of P, versus Ls/AIM of Fig. 8.6 were computed with

b )
- =1.1
a
S-05
a
ka = 2.95 . (8.16)
BKM = 15
XM = 40
Z] = Z'z = Zg‘lE )

64

|




1.0 NN B RN i A N
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0.0 0.5 1.0 1.5

Fig. 8.6. Plot of the ratio P, of the transmitted power to the input power
versus L3/A\3M when ka = 2.95. The input power is the power
of the incident T' My, wave in the circular waveguide.

The curve in Fig. 8.6 was terminated at L3/ AIM = 1.5. As L3/AIM becomes
larger and larger, P, versus L3/AIM becomes more and more periodic with
period one. Adding one to the value of L3/A2M does not change the reflection
of the T My, wave from the short at z = L. It only changes the reflections of
the even and odd T E}; modes and all the nonpropagating modes. Now, with
the parameters of (8.16), our solution for the electric field in the circular
waveguide did not contain any TFE;; modes. The computed values of the
constants CLE® and CTE° in (6.75) were zero. When L3/ATM is large, there
is not much reflection of nonpropagating modes from the short at = = Lj
because any nonpropagating mode suffers attenuation on its journey from
the aperture to the short at z = Lj. Furthermore, its reflection suffers the
same amount of attenuation in going from the short at = = L3 back to the
aperture.

In Fig. 8.6, P, could not be plotted for L3/\IM < 0.067983034 because
L3 cannot be less than ¢/2. The approximate value 0.067983034 is obtained
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by writing

Ls __c_
W
and substituting (8.3) and (8.5) into the right-hand side of (8.17) to obtain

2.95)2 — (2.40482556)2
Agi, = V957 - (2:40482536) = 0.067983034. (8.18)

o1 8w

Figures 8.7 to 8.13 show plots of IEé,’m((ﬁ,0)|/|_£_7§1“'[e+|rms of (7.13) ver-
sus ¢/d, and |EAD(0, 2)|/|ETMF | ms versus z/c for ka = 2.855994, 2.86,
2.90, 2.95, 3.00, 3.05, and 3.054236 when L3/[AM];,2005 = 0.5. As given by
(7.13), E';Az)(¢, 0)/|EIMe+| ., is the ¢-component of the normalized elec-
tric field at z = 0 in the right-hand aperture A,. As given by (7.14),
EAN(0, 2)/|EXMe| . is the z-component of the normalized electric field
at ¢ = 0 in A;. The values 2.855994 and 3.054236 were purposely chosen
close to the lower and upper bounds in (8.10). The curves in Figs. 8.7 to 8.13
are not smooth because they were obtained by drawing straight lines between
points spaced 0.025 apart in ¢/¢, and 0.05 apart in z/=,. In Figs. 8.7 to 8.13,
|EAD(0, 2)| is generally much larger than |E&‘42)(¢, 0)}. This is expected be-
cause the aperture A, stops only the z-directed electric current J of (8.15).

There is no ¢-directed electric current to stop.

The data for the plots in Figs. 8.7 to 8.13 were computed with

(8.17)

b 3\
-=1.1
a
S-0s5
a
L3 = 0-5[Aglﬁl]ka=2.95 (819)
BKM = 33
XM =100
=2, = ZOTIE )

where [AIM]1.=2.05 is given by (8.5). For the data in (8.19), the computed
values of Vp';TM and Vp‘ZITE satisfy

1ITM _ y2TM
qu - qu }

2
VITE _ y2TE (8.20)
Pq Pe
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Fig. 8.7. The ratios (a) |[EV?|/|ETMe*! o and (b) |ESD|/|ETMe |, of the
magnitudes of the ¢- and z-directed electric fields in the aperture
A, to the root mean square value of the electric field of the incident
T Moy wave in the circular cylinder when ka = 2.855994 and L; =
0.5 [’\gf\’]kuz,ss'
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Fig. 8.8. The ratios (a) |ES*?|/|ETM* |ms and (b) |EGD| /| ELMH | s of the
magnitudes of the ¢- and z-directed electric fields in the aperture
Aj to the root mean square value of the electric field of the incident
T My wave in the circular cylinder when ka = 2.86 and L3 =
0.5 [ATM] .
ka=2.95
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Fig. 8.9. The ratios (a) |ES™®|/|EZM* | ims and (b) | EAD|/| EZM* | s of the
magnitudes of the ¢- and z-directed electric fields in the aperture
A2 to the root mean square value of the electric field of the incident
T My, wave in the circular cylinder when ka = 2.90 and L3 =
0.5 ngf"] .
ka=2.95
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Fig. $.10. The ratios (a) [ES*?|/|ETM* |ms and (b) |EWD|/IETMe* o of the
magnitudes of the ¢- and z-directed electric fields 1n the aperture
A7 to the root mean square value of the electric field of the incident
T My, wave in the circular cylinder when ka = 2.95 and L; =
0.5 [Ag{"]ka=2.95'
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Fig.8.11. The ratios (a) |ES*?|/|EZM* |ams and (b) |ESD| /) ETMY |orns of the
magnitudes of the ¢- and z-directed electric fields in the aperture
A3 to the root mean square value of the electric field of the incident
T My, wave in the circular cylinder when ka = 3.00 and L; =
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Fig. 8.12. The ratios (a) lEg“’l/]Eg;"”lm and (b) |[EWD|/|EXMet)  of the
magnitudes of the ¢- and z-directed electric fields in the aperture
A; to the root mean square value of the electric field of the incident
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Fig. 8.13. The ratios (a) [ES*™[/|EEM* | s and (b) |EAD|/|ETMe+| . of the
magnitudes of the ¢- and z-directed electric fields in the aperture
A7 to the root mean square value of the electric field of the incident
T My, wave in the circular cylinder when ka = 3.054236 and L; =
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the angle * — ¢ in A,. Furthermore, the z component of the electric field
at the angle ¢ in A, is equal to the z component of the electric field at the
angle * — ¢ in A,.

Note that the values of BKM and XM in (8.19) are larger than those in
(8.16). Larger values of BKM and XM were needed for accurate calculation of
the tangential electric field in A; than for accurate calculation of P,. Larger
values were needed because the convergence of the electric field in A; with
increasing BKM and XM was slower than the convergence of P,. The electric
field in A, converges slowly because its ¢-component tends toward infinity as
1/(1—(¢/%,)*)" when ¢/, approaches +1 where v = (1—2¢,/7)/(3~2¢,/7),
and its z-component tends toward infinity as 1/(1 — (2z/¢)®)/® when 2z/c
approaches +1 [6, page 3387].




Appendix A

Ordering the Expansion
Functions

The expansion function M’ (¢, z) for the equivalent magnetic current M
is, according to [1, eq. (2.13)], defined in terms of €’ .. Here, § may be either
TM or TE, _,7,11,”1’ 1s the electric type mode vector of the T M,,, rectangular
waveguide mode, and eTZ is the electric-type mode vector of the TE,,, rect-
angular waveguide mode The expansion function M? (4, 2) is, according to
(1, eq. (2.14)], also defired in terms of e,

The expansion functions are arranged in the following order:

LM m =12, MM @)}, {M5Y,m = 1,2, MM (3)},

ml’

(MM, m=1,2,---, MM (4)} ,-
CAMTE m=1,2,- MM(D)}, {MFF,m =0,1,--- MM (2)},

mo T

{Msz,m=0,1,---,MM(3)},...

o

3. {MTM m =12, ,MM(2)}, {Atfn?’,m=1,2,---,MM(3)},
(MM m=1,2,--- MM(4)} ,--
4. {w?}f, =1,2,- MM 1)}, {_\13}1’5, =0,1,--,MM(2)},

{M¥TE m=0,1,--- MM(@3)},--

As listed above, items 3 and 4 are, respectively, items 1 and 2 with the
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superscript 1 replaced by 2.

The MM's in items 1, 2, 3, and 4 are variables that are calculated in our
computer program. The value of MM (n + 1) is determined in the following
manner. The sequences of expansion functions {_\[lT‘"}. {L[_ TE}, {;\_[2“[

1
—=mn mn mn *
and {‘\_[fn"’;E} are terminated by requiring that the nonnegative integers m
and n be small enough so that

kmnb < BKM (A.1)

where k.. is the mode cutoff wavenumber given by (2.4), and BKM is a
specified constant. The parameter BKM is not written with italicized letters
because it is an input variable for our computer program. Substitution of
(2.4) into (A.1) gives

2
\J(rmr)2 + ("Lb> < BKM. (A.2)
c
According to (A.2), MM (n 4 1) is the largest integer such that
b\"
\J(.\L\I(n + 1)) + ('—l——) < BKM. (A.3)
C

All values of n so large that no integer MM (n + 1) satisfies (A.3) are disal-
lowed.

If we define M}TM to be the ith ATV initem 1 for i = 1,2, -, then
there will be a pair of integers m and n such that M7 = M!TM . Thys,
there will, for the AM'7%’s be a correspondence between each pair of integers
m and n in use and each single integer i. Replacing m, n, and ¢ by p, ¢, and
. respectively, there will. for the M'7%’s be a correspondence between each
pair of integers p and ¢ in use and each single integer j. This is what 1s
called in the sentence following (2.3) the correspondence between each pair
of integers (p,q) used in [1. eq. (3.44)] and the subscript j in [1. eq. (3.44)].

If we define A_'[_}TE to | e the ;th MTE 4 jtem 2 for 1 = 1.2.---. then
there will be a pair of integers m and n such that !TE = MITE Thus,
there will, for the M'TE’s, be a correspondence between each pair of integers
m and n in use and each single integer i:. Replacing m. n, and : by p. g,
and J, respectively, there will, for the MTEs be a correspondence between
each pair of integers p »nd ¢ in use and each single integer ;. This is what is
called in the sentence following (2.5) the correspondence between each pair
of integers (p,q) used in [1. eq. (3.47)] and the subscripi ; in [1, eq. (3.47))].
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Appendix B

Roots of Bessel Functions and
Their Derivatives

This appendix describes how numerical values of {jn5, s = 1,2, , Smax; 7 =
0,1,---}and {j/,, s=1,2,"++,Smax; n =0,1,---} are obtained. Here, j,, is
the st root of It

Jn(Jns) = 0. (B.1)

Furthermore, !, is the sth root of J.:
I (Jns) = 0. (B.2)

In (B.1), J, is the Bessel function of the first kind of order n. In (B.2), J;, is
the der: -ative of J, with respect to its argument. Now, the roots {j,,} and
{s.,} are ordered so that

0 < jo,l < j({),l < j0,2 < j(l),Z e < jO,Smax < j(l),smu (B 3)
n < ];l,l < J"-l < J:‘t,2 < ]n,2 e < J;,Smar < ]nysmax y = 1 ?‘ e

Here, smax depends on n. Given n, spmax is the largest value of s such that

0
=1’2’...} B.4)

where XM is not written with italicized letters because it is an input variable
for our computer program. Assuming that XM > jg . all values of n so large
that j. , > XM are disallowed. In {B.1), XM is a constant that c~ntrols the

jo.a S X‘A\Iv n
Jns S XM, n

7
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number of roots that are calculated. If one wants to calculate more roots,
one should choose a larger value of XM.

Our numerical values of {jns, s = 1,2,---,49; n = 0,1,---,19} and
{jrs>s = 1,2,---,49; n = 0,1,---,19} are taken directly from [5, Tables
1 and 2]. For other values of n and s, we calculate j,, and j’, by means of
formulas given in [5]. In the body of the present report, the s roots of J,
and J; were called «,, and z/,, to coincide with the notation in [1]. Here in
Appendix B, these roots are, more in harmony with the notation in [5], called
Jns and j! .. However, our notation in Appendix B is slightly different from
that of [5]. Our jy, is what Olver calls j,,. Our jj, is what Olver calls j§ . ;.
Our j;, for n > 1 is what Olver calls 5/ ;. Our “inner fringe” calculated values
of {j20sy s = 1,2,--+,50}, {jnso, n = 0,1,2,---,19}, {3}, s = 1,2,---,50},
and {j;50, 7 = 0,1,2,---,19} agree well with the “outer fringe” tabulated
values in [5, Tables 1 and 2]. Tlere is no entry in [5, Table 2] which corre-
sponds to our jgso. However, according to (3, formula 9.1.28], j§ 50 = j1,50,
and there is an entry in [5, Table 1] which corresponds to our j; 5o. Although,
as stated earlier in this paragraph, our notation does not normally place a
comma between the subscripts of ; and j', we had to use a comma in the
previous two sentences in order to separate the “0” from the “50” and the
“1” from the “50”.

B.1 Evaluation of Roots of Bessel Functions
of Large Order

For n > 20 and s > 1, we approximate j,, by [5, eq. (9.01)]
ne=nz+ A4 2 (B.5)
n o n

where z, p;, and p, are tabulated functions of ~( where
— (= —n" g, (B.6)

In (B.6), a, is the sth negative root of the Airy function Ai:

Ai(a,) =0, s=1,2,---. (B.7)
Here,
0<—-a1 < ~a;< —az < -+ -. (B.8)
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The roots {a,, s = 1,2,---,50} are tabulated [5, Table V, page 78]. For
s > 50 [5, eq. (9.07)],

5
23
a, = —\ (1 + 48A2) (B.9)
where [5, eq. (9.09)],
A= %”(43 ~1). (B.10)

Actually, z, p1, and p, are tabulated functions of —( only for (0 < —¢ < 7.5)
[5, Table 1V, pages 72 and 74]. If —¢ > 7.5, then z — 2/(3£°) and p, are
tabulated functions of ¢ [5, Table IV, page 74] where
- L (B.11)
v-¢ '
If —¢ > 7.5, then p; = 0.
The modified interpolation formula of Everett [5, ~q. (9.04)], [7, page 57],

fo=1=p)fo+pfi + E28L + Fably + Mavg + Navy, (B.12)

is used to obtain accurate values of z, p;, and p,. In (B.12), the f’s are vaiues
of the function being interpolated, the §2’s are modified second-order differ-
ences, and the 4*’s are modified fourth-order differences. In particular, f, is
the interpolated value of f at the actual value of the argument; fo, 62,5, and
73 are the tabulated values of f, 62, and 4* at the nearest smaller tabulated
value of the argument; and f;, 6%, and +; are the tabulated values of f, 62,
and v* at the nearest larger tabulated value of the argument. The argument
is either —¢ or £. Numerically, p is the ratio of the difference between the
actual value and the nearest smaller tabulated value of the argument to the
difference between the nearest larger and nearest smaller tabulated values of
the argument. Thus, the actual value of the argument is a fraction p of the
way from the nearest lower tabulated value to the nearest upper tabulated
value. In (B.12), E,, Fy, My, and N, are given by [7, pages 56 and 57]

(p—1)(p—2)

E, = -2 : (B.13)
F, = (P+1)Z(P—1) (B.14)
M, = 1000E2{(—”——+1;——((-)’—’—‘—Q +0.184} (B.15)
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N, = 1000F, {(_p_t_?(o_p—_?) + 0.184} . (B.16)

B.2 Evaluation of Roots of Derivatives of
Bessel Functions of Large Order

For n > 20 and s > 1, we approximate j., by 5, eq. (9.02)]
fa=nz4 L 2B (B.17)
n n® n

where z, ¢, ¢z, and ¢3 are tabulated functions of —( [5, Table IV, pages
72-75] where
—(=-n"3. (B.18)
In (B.18), a/, is the s*h negative root of Ai’, the derivative of the Airy function
Al
AV(d)=0, s=1,2,---. (B.19)
Here,
0< —a] < —ay<—az<---. (B.20)

The roots {a), s = 1,2,---,50} are tabulated [5, Table V, page 78]. For
s > 50 [5, eq. (9.08)],

7
"= 1 - 2
&, =~ (1 48ﬂ2) (B.21)
where [5, eq. (9.09)]
3
w= %(43 —3). (B.22)

The tabulation of z was described in the two sentences following (B.10).
Actually, q1, g2, and ¢z are tabulated functions of —( only for 0 < ( < 7.5
(5, Table IV, pages 73 and 75]. If —( > 7.5, then ¢ = ¢3 = 0 and ¢ is
a tabulated function of € [5, Table IV, page 75] where £ is given by (B.11).
The interpolation formula (B.12) is used to obtain accurate values of z, ¢,
q2, and gs.




B.3 Evaluation of Large Roots of Bessel
Functions

For 0 < n <19 and s > 50, we approximate j,, and j/ by the truncated
McMahon expansions {5, egs. (1.10) and (1.12)]

: Azry
=8~ ; 57 )i (B.23)
S S (B.24)
ns ot (21. _ 1)!23r61(2r—1) ’ :
In (B.23),
B=(2n+4s — 1)% (B.25)
and [5, eq. (1.11)]
Ar=p—-1 (B.26)
Az = (u—1)(Tp — 31) (B.27)
As = 4(u — 1)(83u® — 982u + 3779) (B.28)
Az = 6(p — 1)(6949> — 15385542 + 1585743 — 6277237)  (B.29)
where
g = 4n? (B.30)
In (B.24),
B = (2n+4s—3) (B.31)
and (5, eq. (1.13)]
Al =p+3 (B.32)
Ay = Tp? +82u -9 (B.33)
AL = 4(S3u® + 207542 — 30394 + 3537) (B.34)

Al = 6(6949u* + 29649243 ~ 124800242 + 74143804 — 5853627) (B.35)
where u is given by (B.30). Expressions (B.23) and (B.24) expand to

A A 1 i‘z) 1 (A_)
Jns =B -3 384,33—15360B5(4 312064057 \ 6 (B.36)

LA A 1 (A 1 AL i
Sy L - L)~ (Z2) (B3
Jne =8 = 35~ 3317 T 5360875 ( 3+ )~ 3aa0ea057 \ 6 ) (B3D
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Appendix C

The Effect of Loads on the
TMy; Source in the Circular
Waveguide

In the body of this report, we find the electric fields in the waveguide mode
converter due to the excitation of a unit-amplitude z-traveling 7'My, wave.
The source of this wave is taken to be the electric current source J™ whose
—z-traveling waves see a matched load. Specializing further, we take J™
to be the transverse electric surface current density located at z = — L5 that
launches the z-traveling wave whose electromagnetic field is (ELMe*, HIMe+)

in the region for which 2 > —Ls. Here,

TMe+ _ 7TM M —jBITM
_E_o]‘ e+ _ Z(n‘ eo_e_g'lz e(p’(ﬁ)e 1By z+y-z

TMe+ TM —30TM,
Hy " = by ‘(p, d)e 701

Jwe

(KEMY2 0T (p, g)ei8
. (C.1)

Equation (C.1) was obtained by substituting (6.63) into [1, eq. (B.1)]. The
electric and magnetic fields defined by (C.1) are those of the z-traveling
T My; mode. We assume that J™P also launches the —z-traveling wave whose
electromagnetic field is C(EIMe~, HIM*~) in the region for which = < —Ls.

Here, C is an unknown constant and

TA"I - ! M 3T M
E5 = 3o, 6)05 1,

Me- M 3TM
HIMe = B (p, §)erh:

Jwe 2)

(kgi) o5 (o, B)e e }
(C
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Equation (C.2) was obtained by substituting {6.63) into (1, eq. (B.2)]. The
electric and magnetic fields defined by (C.2) are those of the —z-traveling
T My, mode. Requiring the transverse electric field to be ccutinuous at z =

—Ls, we obtain
C = —eP"Ls, (C.3)

The TM,, waves radiated by J'™ in the circular waveguide are shown in
Fig. C.1 where “1” is the coefficient of the z-traveling T\, mode in the
region for which —Ls < z < —¢/2. “I'” is the coefficient of the —z-traveling
T Mo, mode in the region for which —Ls < z < —¢/2. “C + I™ is the
coefficient of the —z-traveling T Mo; mode in the region for which —00 < z <
—Ls. The T My, waves shown in Fig. C.1 are those dealt with in the body of
this report. Thus, from (6.75), we have

[ = —CLMee=i2%"Ls (C.4)

Here, I' is a reflection coefficient because v is the ratio of the coefficient of the
—z-traveling mode field (C.2) to the coefficient of the z-traveling mode field
(C.1) in the region for which —Ls < z < —¢/2. Since the magnetic fields of
the mode fields are AZM¢(p, $)eF901"'z rather than £hTM¢(p, $)eT5%1™7 | 5 is
a reflection coefficient for the current rather than for the voltage.

The loads mentioned in the title of this appendix are taken to be the
T Mgy, loads Zp4 at z = —Lg and Zy, at z = —Lg. See Fig. C.2. A T My, load
is a load that acts on the voltage and current of only the T'Afy; waves. When
the loads Zr4 and Zr¢ are in place, the T My, electric and magnetic fields £
and H in the circular waveguide are, as indicated in Fig. C.2, assumed to be
given by

E = C{EIM+ 4+ CTETMe- e o
H = CHHIMe+ 4 of HIMe- —Ly<z=<Ls (C.3)
- V4 1 4 1
E = CHELM + C5 Eg)M- et e
H = CHHTMe+ 4 o5 HTMe- —Lls<z< —Lg (C.6)
- V5 1 5 1
Me - Me— - &6 ~ -3 .
-H_=Cé'ﬂgiw++ceﬂf," 2
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Fig. C.1. The T My, waves radiated by J™P in the circular waveguide.
The situation in Fig. C.1 is the same as that in the body of
this report. There are no additional loads.
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Fig. C.2. The T My, waves radiated by J'™ when the additional loads
Z4 and Zpg are present in the circular waveguide.
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where the C’s are unknown constants.

The effect of the loads Z;4 and Z;¢ is to change the electric field inci-
dent on the aperture-perforated section of circular waveguide from EIMe*
in Fig. C.1 to C§f ETM** in Fig. C.2. Viewing this incident electric field as
the excitation of the aperture-perforated section of circular waveguide, we
deduce that the fields in this section of waveguide in Fig. C.2 are those in
Fig. C.1 multiplied by Cg. Therefore,

Cs =TC¢. (C.8)

Equation (C.8) is one simultaneous equation in the variables C¥, C;, Cf,
Cs, Cq, and C§. In the following five paragraphs, we obtain five more
simultaneous equations in these six variables.

Because the waves launched by J™® in Fig. C.2 are the same as those in
Fig. C.1, we have

Cr=cC}+1 (C.9)
C; =C; +C. (C.10)

Recall that the loads Z;4 and Z6 act on the voltages and currents of the
T My, waves. These voltages and currents are called the T My, voltages and
currents. Seeking to define the T My, voltages and currents, we substitute
(C.1) and (C.2) into (C.5)-(C.7) and take only the transverse part of E,
which is called E,:

E (C+ ~iBTM2 _C- iBTMz ZTMeo Tl\/le

(p,8)
(C+ "Jﬁol z 4 C eJﬁOI zg hTAIe } - L4 <z < _Ls (Cll)
)
) it

t —]ﬁol z _ C e]

~Ls<z< —Ls (C.12)

o

( zr TMeo TMe( p,9) }
( ‘Jﬁox z 4 Cs eJﬁox Mz
= (¢t

(33

e~ 385 :_C; edBaM z) ZTMeo TMe( 5 4) } L c (c.13)
6 - . /.
2

= (Cf 9852 + C5 %) KEMe(p, )

The T My, voltages are defined to be the coefficients of eI M¢(p, ¢) in (C.11)-
(C.13). The T My, currents are defined to be the coefficients of RZM¢(p, ¢) in
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(C.11)-(C.13). Viewing Fig. C.2 as a circuit, the T My, voltage is the voltage
of the upper line with respect to the lower one, and the T My, current is the
z-directed electric current on the upper line.

The presence of Z14 at z = — L4 requires that

VvV
- =-7 14
[ ,]m_q e ' (C.14)
where V' is the T My, voltage and I is the TMy; current. The subscript
“z = —L}” denotes the limit as z approaches —L, from above. “From

above” means through values which are greater than —L,. Extracting V and
I from (C.11) and substituting them into (C.14), we obtain

C;*'ejh - C';e—ﬂq Zr4
C‘:’ejh + C:e"jh = —Zgi/\!eo (C15)
where
14 = g‘lﬂlL‘t. (C16)
Solving (C.15) for C in terms of C;, we arrive at
Cf=r,C; (C.17)
where ZTMeo _ 7
[, =20 = “L4 —j2i, C.18
47 ZIMeo ¢ ZL4e ( )
Since there is no series load at z = ~Lg,
[V]z=—Ls— = [V]zz-—L: (Clg)
where the subscript “2 = —Lg” denotes the the limit as z approaches —Lg
from below and “z = —LZ?” denotes the limit as z approaches —Lg from

above. Extracting the V’s from (C.12) and (C.13) and substituting them
into (C.19), we obtain

Cells —Cye™i's = CFells — Cgeis (C.20)

where

ls = BTM L. (C.21)
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At z = —Lg, the TMy, current V/Z1¢ flows from the upper terminal of Z¢
to its lower terminal so that

ooty = 7 Vhieot + Ul as- (C.22)

Extracting V and I from (C.12) and (C.13) and substituting them into
(C.22), we obtain

Ctells — Cyeils

Chells + Creie = CFelle + Cye i + = (C.23)

where 7
Z= -Z~T—j;‘,”’— (C.24)

ot

Equation (C.23) becomes
CH1 = 2)e"s — Cs (1 4+ Z)e™ ' + CFZe' + C5Ze™ " =0.  (C.25)

Equations (C.17), (C.10), (C.9), (C.20), (C.25), and (C.8), ordered as

cited, are written in matrix form as

[ 1 -Ty4 0 0 0 0 17CFT
0 1 0 -1 0 0 Cy
-1 0 1 0 0 0 ct|
0 0 —ells e—ls elle  _g—ils Cs =
0 0 (1-2)efs —(1+Z)e s Zelle Ze s cs
L 0 0 0 0 -Tr 1 || Cs ]
0
CW
b L(caos)
o | (C2
0
L 0

We proceed to solve the matrix equation (C.26) for ck, cr, Cr, Cy, Cf,
and Cg .
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Adding the first row of (C.26) and the product of I'y with the second row
to the third row, we obtain, in view of (C.3),

- 1 -—-F4 O 0 0 O 1 - C;_ -
0 1 0 ~1 0 0 oy
00 ! T, 0 0 ors
0 0 _ejls e_jIS ej15 _e—jle Cs_ =
0 0 (1-2)% —(1+2)e e Zeils ge-ils | | CF
L 0 O 0 0 _F 1 -J I CG_ ]
-0
C
D [y
0 (C.27)
0
L 0 |
where
D =1 Ty, (c29)
The last four rows of (C.27) are
1 - 0 0 ct D
—ells e—ile ells —e—ils Cs— 0
; : : . = )
(1= Z)els —(1+ Z)e7'e Zel'e Zeile oy 0 (C.29)
0 0 -r 1 Ce 0

Adding the product of e?¢ with the first row to the second row of (C.29) and

adding the product of —(1 — Z)e’'s with the first row to the third row, we
obtain

1 T, 0 0 ct
0 eIl _ F4ej16 elle  _e—ils Cs
0 —(14 Z)e~e 4 (1 - Z)Tyels Zei Ze-ie | | cF | =
0 0 T 1 Cs
D
(1 27\ peite |- (€30
0
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Discarding the first row of (C.30) and multiplying the second and third rows
by e~7'¢, we obtain

eI T, 1 —e ][ Cy
—(14+ 2Z)e M 4+ (1= 2y Z Ze 3% Cd | =
0 -T 1 Ce
D
—(1-2)D (C.31)
0

Adding the product of the first row with {(1+Z)e™"%s —(1—Z)[y}/{e 7% —
['4} to the second row of (C.31), we obtain

e~ite — T, 1 —e 7% Cs

(1+2Z)e" 3% Ty —eJ¥6 — (27 — 1)Tye 9% ct | =

0 - - I
e~7%s — F4 e~J2s — F4
0 -T 1 Ce
D -
2ZDe7% | (C.32)
6‘12’6 -_ F4
0 -
Discarding the first row of (C.32) and multiplying the second row by e™7%6 —
['4, we obtain
(14+2Z)e~% — T, —e~ie (27 — )T e™7%s ] [ Ccg }
-T 1 Cs
27 De~1%e
(C.33)
0

Adding the product of the first row of (C.33) with T'/{(1 + 2Z)e~7%s — Ty}
to the second row, we obtain

{ [(ei¥s 4 (27 — 1)F4e‘j2'6)} _ 27 Dle7%s
1 - CG = (

, . (C.34
(14+2Z)e-7% — T, 1+ 22Z)e-2%s — Ty ( )

89

|




Solving (C.34) for Cg, we obtain

_  2ZDr
Cqg = A (C.35)
where . .
A=1+4+2Z—(2Z —1)IT, — T/ —Te 7%, (C.36)
Substitution of (C.35) into the second row of (C.33) gives
2ZD -

Substituting (C.35) and (C.36) into the first row of (C.32) and solving for

Cs , we arrive at

{22 -1 +e%}D

Cy = A (C.38)
Substitution of {C.38) into the first row of (C.30) gives
9 — Te—J%s
oy o P2 1-TePID (C.39)

A

Next, Cy is given by (C.10). Finally, C{ is given by (C.17). It can be verified
that the C’s given by (C.35), (C.37), (C.38), (C.39), (C.10), and (C.17) do
indeed satisfy (C.26).
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